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Preface

As a child, I was always fascinated by how computer games could create immersive, be-
lievable physical environments — remarkable even 25 years ago. I dreamt of developing
my own software capable of describing the world, offering a deeper understanding of my
surroundings. It turns out that game developers and movie animators [Bergou et al. 2010]
use models similar to those employed by engineers; however, they empirically adjust ma-
terial parameters to craft the magical worlds that captivated me as a child. This curiosity
inspired me to pursue a career in engineering, with the goal of understanding the world
around me and using that knowledge to create something new.

After graduating, while working at a structural engineering firm, I realized that no
official European design standard existed for structural glazing. This observation sparked
my decision to pursue academic research, leading me to dedicate my Ph.D. thesis to the
failure of glass at the macroscopic scale. I was fortunate to participate in the COST
Action TU0905, an initiative aimed at developing a pre-standard for these elegant structures
[Feldmann et al. 2023].

My work on glass continued into my postdoctoral research, where I shifted focus from
the continuum to the atomic scale, then to micron-scale experiments, and finally, back to
macroscopic fracture. Around the early 2010s, the now-popular phase-field method was in
its early stages. Recognizing its versatility in capturing various phenomena, including the
yield criterion I developed at the atomic scale, I began exploring this technique. However, I
quickly identified a significant gap in understanding concerning the regularization length —
a crucial parameter that sets phase-field methods apart from other approaches to fracture
modeling.

The manuscript begins with a brief literature review on length scales in fracture in
chapter 1. Following this, chapter 2 examines the measurable effects of the regularization
length. While the diffuse description was initially introduced to simplify numerical solu-
tions, I argue in this thesis that it holds a necessary physical basis in many cases. This
chapter covers tensile, in-plane, and antiplane shear fracture models, emphasizing the non-
linear scaling effects introduced by the regularization length. The chapter concludes by
underscoring the importance of regularization in dynamic fracture and demonstrating the
technique’s flexibility in modeling other physical phenomena.

In chapter 3, I explore various length scales in silicate glasses, aiming to determine
when a discrete material can be considered continuous. This section covers elasticity and
plasticity — fields I studied during my postdoctoral research — before moving on to shear
band formation and fracture, topics I continued to investigate as a CNRS researcher. The
chapter concludes with a theory based on densification that unites these diverse phenomena.

Finally, chapter 4 delves into the mechanics of failure in architected materials. It demon-
strates how Cosserat theory is essential for describing the behavior of lattice structures, a
subject I explored during my years as a postdoc in Nantes. The chapter explains how to
calculate the elastic Cosserat constants for arbitrary lattice structures, how to compute
the toughness of these structures, and how to optimize macroscopic geometries to improve
overall rigidity.

Looking ahead, the goal is to consolidate the knowledge I have gained over the past
10 years into a comprehensive, robust methodology for designing new, tailored mechanical
metamaterials — a vision I first had as a teenager.
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Motivation
My research focuses on understanding the mechanisms underlying material and structural
failures, such as plasticity, damage, and fracture, across various spatial and temporal scales.
The goal is to develop innovative material architectures that address the increasing demand
for energy efficiency across industries, including aviation, transport, energy storage, or
defense.

My research is structured around three primary axes: (i) modeling and experimental
investigation of crack propagation at the macroscopic scale, (ii) multi-scale analysis of the
microscopic mechanisms that contribute to the toughness and resilience of materials, and
(iii) development of optimization techniques for designing fracture-resistant metamaterials.

From a young age, I have been fascinated by how simulations can predict real-world
phenomena and enhance our understanding of reality. This passion has driven me to de-
vote significant effort toward developing efficient and robust methods for 2D and 3D crack
propagation simulations, utilizing hybrid discrete and finite element methods, as well as
diffuse damage models such as the phase-field technique.

As a co-project leader, I have managed both academic projects (e.g., ANR e-
WARNINGS, ANR GaLAaD) and industrial collaborations (with IRSN, CEA), focusing
on the implementation and refinement of the phase-field technique. This work has ad-
dressed complex topics such as early detection of acoustic waves emitted during fatigue
fractures and oxygen-induced alloy embrittlement in nuclear safety. This development has
lead to the publication of a series of highly regarded articles [Molnár & Gravouil 2017,
Molnár et al. 2020b, Molnár et al. 2022, Eid et al. 2023], with the first phase-field paper
[Molnár & Gravouil 2017] receiving approximately 400 independent citations since its pub-
lication in 2017, including nearly 100 citations in 2023 alone.

This success has drawn numerous PhD students and postdoctoral researchers to
LaMCoS, eager to explore the intricacies of this technique. Consequently, LaMCoS
has emerged as a leading institution in the development and application of phase-field
methods, recognized both nationally and internationally. For instance, Ethel Djeumen
[Djeumen et al. 2022] extended the original phase-field code to account for oxidation and
phase changes, providing insights into how materials become more brittle and lose duc-
tility. In parallel, Baptiste Pillet applied the phase-field technique to model hyperelastic
fracture in biological materials, while Adrien Jaccon implemented acceleration methods
(both spatial and temporal) to model fatigue fracture.

Moreover, our research addresses not only applied problems but also fundamental phys-
ical principles, such as fracture toughness. Notably, our comparative studies of finite frac-
ture mechanics and phase-field approaches [Molnár et al. 2020a, Molnár et al. 2024] have
revealed that the diffusion length scale is not simply a numerical parameter but an enrich-
ing addition to traditional fracture mechanics frameworks. This finding provides a deeper
understanding of fracture phenomena and reinforces the physical validity of diffuse damage
models as robust, reality-based approaches.

In parallel, we have critically examined the fundamental concepts of the coupled crite-
rion, including the initial dynamic jump. This line of inquiry has been explored in a series
of articles since [Doitrand et al. 2022, Doitrand et al. 2023b, Doitrand et al. 2023a].

Engaging with multiple research communities enables me to bridge established knowl-
edge across disciplines. For instance, my expertise in atomic-scale simulations has
led to the development of a physically inspired failure criterion for silicate glasses
[Molnár et al. 2016d, Molnár et al. 2016b, Molnár et al. 2017a], facilitating collaborations
with experimental physicists (through projects like ANR GaLAaD and ANR RATES) and
the international glass industry, including NEG Japan.
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Atomic-scale simulations allow us to explore various compositions and conditions—such
as high pressures, temperatures, and loading rates—that are challenging to replicate ex-
perimentally but are encountered in real-world material applications. These simulations
provide insight into the fundamental mechanisms driving plasticity [Molnár et al. 2017a],
fracture, and memory effects [Deschamps et al. 2022], paving the way for more refined ma-
terial development.

The third research axis focuses on utilizing insights gained from both continuum and
discrete scales to design materials with enhanced fracture resistance. I lead the development
of robust optimization techniques [Molnár & Blal 2023] that leverage enriched mechanical
descriptions (e.g., Cosserat continuum) to create more resilient structural components.

For instance, in collaboration with Denis Machon and Nawfal Blal at Sherbrooke Uni-
versity in Canada, we are working on the design of silicon-based anodes for sustainable
battery architectures [Saidi et al. 2023]. Silicon, a high-capacity and eco-friendly alterna-
tive to current technologies, faces challenges due to its fragility. Tom Guisard’s research
centers on optimizing the nanoscale pore structure of batteries to enhance their durability
during charging cycles—a critical factor currently limiting the widespread adoption of this
technology. By refining the pore architecture, his work aims to develop materials that are
more resistant to fracture, thereby extending battery lifespan and reliability. This optimiza-
tion framework holds promise for a variety of applications, as it seeks to create material
architectures that not only improve fracture resistance but also reduce structural weight,
contributing to more efficient and robust energy storage solutions.
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Chapter 1

Nonlinear Scaling in Fracture:
A Brief Review

The chapter offers a comprehensive overview of nonlinear scaling in fracture mechanics,
focusing on the intricacies of material failure, with particular emphasis on brittle fracture.
It explores the challenges of accurately predicting failure, which arise from factors such as
atomic-scale interactions, material defects, and localized stress concentrations. Key the-
ories are reviewed, including Griffith’s energy-based criterion and Irwin’s stress intensity
factor, both of which are essential for understanding crack initiation and propagation. The
discussion extends to nonlinear scaling laws and their relevance to size effects in materials,
supported by experimental findings that provide critical insights. The chapter concludes
by underscoring the importance of comprehending size-dependent failure mechanisms, par-
ticularly as new materials and cutting-edge manufacturing techniques push the boundaries
of traditional fracture mechanics models.

Associated publications

• [Molnár et al. 2025] G. Molnár, A. Doitrand, R. Estevez and A. Gravouil,A Review of Char-
acteristic Lengths in the Coupled Criterion Framework and Advanced Fracture Models,
Comptes Rendus. Mécanique, 353, pp. 91-111, 2025.

Contents
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1.3 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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Chapter 1. Nonlinear Scaling in Fracture:

A Brief Review

1.1 Context
In engineering materials, failure represents the critical state at which a material can no
longer perform its intended function, making it a pivotal factor in design considerations.
Engineers, scientists, and practitioners have long sought to understand the root causes
of material failure to prevent it. However, due to the complexity of failure mechanisms,
significant safety factors are incorporated into design practices. These safety margins are
essential not only because applied loads are often statistically estimated, but also because
the precise resistance of materials remains uncertain.

Understanding material failure is crucial for both ecological and economic reasons. Over-
estimating the size of structural elements leads to excessive resource consumption, waste,
and environmental impact. In contrast, using lightweight, durable materials can signifi-
cantly reduce energy use and emissions, especially in sectors like transportation. Econom-
ically, weight reduction lowers costs related to fuel, materials, and maintenance. A deeper
understanding of material failure would enable more efficient material use, extend product
lifespans, and minimize waste, ultimately benefiting both the environment and the economy.

Among the various modes of failure, brittle failure is one of the most widely recognized.
It occurs when a material suddenly loses its structural integrity and can no longer bear the
applied load. Brittle failure is typically characterized by a rapid loss of tensile strength and
rigidity, leading to fracture without significant prior deformation.

Another key mode of failure is ductile failure, commonly seen in metallic materials. In
this case, the material retains its elastic stiffness but reaches a point where it can no longer
increase its load-bearing capacity, resulting in yielding under stress. Interestingly, even
materials traditionally considered brittle, such as glass, can exhibit microscopic plasticity
under certain conditions.

Beyond brittle and ductile failures, other modes also play crucial roles in material per-
formance. Buckling occurs under compressive loads, causing a structural component to lose
stability. Creep failure, on the other hand, happens when a material undergoes progressive
deformation over time under constant stress. Fatigue failure is the result of repeated local
deformations, which gradually weaken the material and reduce its resistance.

It is also essential to recognize that failure often results from a combination of these
modes, underscoring the complex behavior of engineering materials under varying condi-
tions.

One of the simplest ways to conceptualize material failure is by visualizing a pe-

force

distancermaxreq

Fmax
g

(a) (b) (c)

Figure 1.1: (a) Interatomic force as a function of distance between atoms. With blue, the
bonding energy is highlighted. (b) Simple shear deformation showing an elementary shear
band. (c) Failure under tensile loading. Red dashed lines show "broken" bonds.
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riodic atomic lattice subjected to either simple shear deformation or tensile exten-
sion. A fundamental principle governing this behavior is the interaction between atoms
[Janssen et al. 2004], where the force between atomic particles is a function of their separa-
tion distance, as illustrated in Fig. 1.1a. The figure presents a simplified atomic interaction
function: at the equilibrium distance, req, the force between atoms is zero, indicating a sta-
ble configuration. When atoms are either pulled apart or compressed, tensile or compressive
forces emerge. The slope of the force-distance curve defines the material’s elementary stiff-
ness. As atoms are separated further, the force increases to a peak value, representing the
elementary strength of the atomic bond. This gradual change in force was first theorized by
van der Waals [der Waals 1873], for which he was awarded the Nobel Prize in 1910. This
maximum force can provide an estimate of the macroscopic strength of a perfect crystalline
material. Unlike in granular materials, atomic bonds can "break" and reform without an
energy penalty, but each bond breakage releases energy, which is dissipated as heat, sound,
or even light.

As depicted in Fig. 1.1b, in a perfect crystalline structure subjected to increasing shear
deformation, atomic bonds break when a certain threshold is surpassed. Depending on the
type of bond (covalent, ionic, metallic, etc.), further deformation may allow the upper layer
of atoms to find new neighbors – provided they do not exceed the maximum separation
distance, rmax – and form new bonds. This enables the structure to retain some resistance
to further deformation, with only a portion of the stored elastic energy being released.
The maximum shear stress observed in this process is commonly referred to as the yield
strength. In reality, however, this behavior is complicated by elementary defects known as
dislocations, which introduce additional complexities into the material’s response.

In contrast, under tensile stress, as shown in Fig. 1.1c, when the distance between atoms
exceeds rmax, bonds begin to break, and the atoms fail to find new partners to form bonds.
As a result, all the stored elastic energy in the material is released, and the tensile stress
within the remaining structure gradually drops to zero, leading to brittle failure.

While this idealized periodic lattice offers useful insights, it is a significant simplification,
as real materials rarely exhibit perfectly homogeneous or flawless microstructures. The
interaction of different atomic species, their arrangements, and the presence of defects within
these networks play critical roles in determining the macroscopic strength and behavior of
the material.

Defects affect the response of structures not only at the atomic-scale but also at the
macroscopic level. To illustrate the effect of macroscopic defects, consider a simple engi-
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Figure 1.2: Illustration of the fracture mechanics challenge: (a) Stress redistribution in a
homogeneous material; (b) Stress concentration near a defect.
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neering example: a column (shown in Fig. 1.2) stretched between two infinitely rigid grips.
If the structure consists of two identical elements and one side is cut, the tensile stress
in the remaining element doubles. However, if the structure is a single continuous element
and is cut halfway through, the resulting stress peak becomes theoretically infinite. Despite
the loaded cross-sections being of the same size in both cases, the mechanical response is
dramatically different. In the latter scenario, these incisions are referred to as cracks. The
stress singularity associated with cracks renders traditional mechanics inadequate for solv-
ing this problem. While comparing applied stresses to material strength can predict failure
in a perfect structure, a different approach is necessary in the presence of defects.

The first viable solution to address such issues was proposed by Griffith [Griffith 1921],
who replaced the stress-based criterion with an energetic approach, suggesting that the
problem could be analyzed through stability considerations. Griffith proposed that the
formation of a crack surface requires a specific amount of elastic energy to be released
from the material, conceptualizing the area under the force-distance curve (as shown in
Fig. 1.1a) as a material parameter. This led to the introduction of the energy release rate,
which represents the energy difference between two singular stress states, remaining non-
singular during crack propagation. Griffith defined the critical energy release rate, also
known as fracture toughness, as the key metric for predicting crack growth.

The advantage of this approach is its ability to handle sharp defects without relying
on singular stress comparisons. While traditional stress-based methods are sufficient to
determine the structural integrity of a defect-free material, Griffith’s energy-based approach
is essential when cracks or defects are present. Over time, this model has proven effective
in predicting crack propagation for materials with sufficiently large defects.

However, most engineering structures are not designed with pre-existing macroscopic
cracks. In materials without such defects, Griffith’s theory would suggest an unrealistic
infinite load-bearing capacity. As a result, engineering design standards still rely predomi-
nantly on stress-based criteria.

Nonetheless, as early as 1958, experiments shown by Irwin [Irwin 1958] demonstrated
that when the sample size is small, the material behaves as the stress-based criterion pre-
dicts. Yet, as the sample size increases or a measurable crack appears, Griffith’s theory
becomes applicable. Between these two extremes lies a nonlinear region, characterized by
a specific length scale where both methods fail to provide accurate predictions – a region
where most manufacturing defects exist.

Over the last 10 years of my work I focused on techniques and examples where nonlinear
effects play a significant role, offering guidelines for tackling this complex issue. In this
manuscript, I suggest techniques how this critical length scale can be estimated in real-
world materials and propose methods to exploit this scale effectively in the design of new
architected materials.

1.2 State-of-the-art
The first empirical observations of the size effect date back to Leonardo da Vinci
[da Vinci 1504, Williams 1957], who noticed that shorter cable segments were stronger than
longer ones, though he did not provide a practical explanation for this phenomenon. It was
Galileo Galilei who later formulated the correct scaling laws for materials under tension
and bending [Galilei 1638], emphasizing how size effects limit the structural integrity of
large natural and man-made structures. Centuries later, as iron and steel became more
widely used, concerns about brittle fracture grew, prompting early material failure testing
[Kirkaldy 1864]. Around the same time, Mariotte [Mariotte 1886], through extensive ex-
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perimentation, suggested that the size effect observed by da Vinci was likely due to internal
faults, concluding that larger structural elements have a higher probability of containing
weak spots, thus reducing their overall strength.

Despite these early insights, little progress was made on the topic until Griffith’s ground-
breaking work in 1921 [Griffith 1921]. Griffith shifted the focus from a stress-based com-
parison to an energetic criterion, demonstrating that the resistance of glass could increase
tenfold by considering the energy release rate. His work laid the foundation for a new
branch of mechanics, essentially providing a theoretical explanation for Galilei’s and Mari-
otte’s experimental results.

At the same time, alongside the development of fracture mechanics, researchers be-
gan exploring statistical theories to explain the power-law scaling observed in experiments.
Peirce [Peirce 1926] developed the weakest-link model for chains, drawing on the extreme
value statistics introduced by Tippett [Tippett 1925]. The statistical treatment of size
effects reached a milestone with Weibull [Weibull 1939b, Weibull 1939a], who introduced
the Weibull distribution to model the probability of material failure based on the tail
of low-strength values. This distribution became fundamental in describing the power-
law relationship between material strength and failure probability, particularly in materi-
als with microscopic flaws or microcracks [Freudenthal 1946]. It has since been applied
to various materials, such as metals and ceramics [Kittl & Díaz 1990], addressing phe-
nomena like fatigue embrittlement, cleavage toughness, and fracture toughness variability
[Evans 1978, Beremin et al. 1983, Lei et al. 1998]. While this statistical approach is widely
accepted and used, in this manuscript, we will focus on a physically based deterministic
approach. Nevertheless, the combination of both statistical and deterministic methods can
be effectively utilized when necessary, providing a more comprehensive understanding of
material failure across different scales.

The non-linear scaling law, first documented by Irwin in the 1950s [Irwin 1958], was
initially overlooked or considered a statistical anomaly. Motivated by the observation
that large concrete structures (such as dams, reactor containments, and bridges) behave
differently from small laboratory specimens, Bažant conducted a series of experiments
[Bažant 1984]. He eventually published his theoretical explanation in 1986, describing a
non-linear scaling law in fracture mechanics [Bažant et al. 1986]. Bažant emphasized the
need for non-linear analysis to account for the significant size effects observed in various en-
gineering structures. This phenomenon has since become critical for the design of large-scale
composite structures such as ship hulls, bulkheads, decks, masts, and structural fuselage
panels, as well as in fields like geotechnical and arctic engineering. For example, evaluating
fault slip stability in the Earth’s crust involves scale transitions that span multiple orders
of magnitude.

Bažant [Bažant 1999] further showed that fracture resistance in many materials devi-
ates from the power-law predictions of linear elastic fracture mechanics, especially when the
initial flaw size is smaller than a critical value. In such cases, stress-based criteria should be
applied. The existence of this critical length scale has since been demonstrated in various
materials, including ceramics [Kimoto et al. 1985, Usami et al. 1986, Leguillon et al. 2018,
Martin et al. 2018], polymers [Doitrand & Sapora 2020, Sapora et al. 2018], silica glass
[Luo et al. 2016], silicon carbide [Bažant & Kazemi 1990], fiber composite laminates
[Bažant et al. 1996], wood [Aicher 2010], concrete, rock [Shah & Swartz 1987], and even
sea ice [Dempsey et al. 1999]. However, experimental observation of this critical scale is
challenging, as it requires testing specimens across multiple size ranges.

The transition length scale is often compared to the size of the fracture process zone
(FPZ), a region around a crack tip where complex, nonlinear deformation occurs. The
FPZ, characterized by a transition from elastic to inelastic behavior, plays a critical role
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in fracture mechanics. In the 1950s, Irwin [Irwin 1948] and Orowan [Orowan 1949] used
X-ray measurements to demonstrate that even in brittle materials, there is evidence of
regularization along crack surfaces. They independently concluded that the true critical
energy release rate should be several orders of magnitude larger than Griffith’s original
proposal. Later, Barenblatt [Barenblatt 1959] and Dugdale [Dugdale 1960] theorized that
material near the crack yields, and this local cohesive traction limits the otherwise infinite
stress peak.

Since then, numerous experimental techniques [Labuz et al. 1983,
Chengyong et al. 1990, Denarie et al. 2001, Du et al. 1990, Guo et al. 1993,
Yu & Kobayashi 1994, Zang et al. 2000, Otsuka & Date 2000, Zietlow & Labuz 1998,
Labuz et al. 1987, Cotterell 2002] have been developed to measure the size and shape
[Neimitz & Aifantis 1987] of the FPZ in brittle materials. These studies commonly assume
that the FPZ is a damaged region around the crack tip linked to irreversible microstructural
changes. The FPZ has been observed in materials such as concrete [Cedolin et al. 1983],
granite [Labuz et al. 1983], natural faults [Vermilye & Scholz 1998], wood [Yu et al. 2019],
model materials [Haidar et al. 2005], and silica glass [Rountree et al. 2010]. A comprehen-
sive review of the FPZ can be found in the thesis of Brooks [Brooks 2013]. Today, digital
image correlation [Réthoré & Estevez 2013] is the primary technique used to quantify
the FPZ, although other methods exist for transparent materials like polycarbonate
[Cortet et al. 2005] or for X-ray measurement in concrete [Otsuka & Date 2000].

While the non-linear scaling law is widely accepted, its underlying cause remains a topic
of active debate. This is particularly important given the rise of advanced manufacturing
techniques that allow the creation of architected materials with structural elements smaller
than the critical length scale of bulk materials, resulting in exceptionally strong overall
responses [Schaedler et al. 2011].

The first estimation of the nonlinear transition length scale was introduced by Irwin
[Irwin 1958], who proposed a correlation between the critical energy release rate, Young’s
modulus, and tensile strength. Although this was a rudimentary estimation, it captured
the essence of the nonlinear problem and provided a lower bound for the applicability of
fracture mechanics. This work also introduced a new metric for toughness: the stress
intensity factor [Irwin 1957].

Later, Taylor [Taylor 2008] revisited the concept of a critical length scale with the
development of the Theory of Critical Distances (TCD), a method designed to predict
failure in materials with stress concentrators like notches or cracks. TCD introduced a
characteristic distance over which the stress field around a defect influences the material’s
resistance to fracture. This approach has proven useful for predicting material failure when
well-defined stress concentrators are present and has been widely adopted to understand
fracture and fatigue behavior in components with complex geometries.

However, the critical distance in TCD was found to be more of a geometric parameter
than a true material constant. Additionally, TCD does not effectively account for nonlinear
effects in cases where small cracks or defects are present, especially when the sample size
is smaller than the critical distance itself.

At this stage, only Bažant’s nonlinear scaling function had successfully matched experi-
mental observations, but it required the calibration of several parameters through expensive
and complex testing. A significant advancement came with the introduction of Finite Frac-
ture Mechanics (FFM) by Leguillon [Leguillon 2002], which was inspired by Barenblatt’s
cohesive zone model [Barenblatt 1962].

FFM introduced a dual criterion for predicting crack initiation, combining both energy-
and stress-based criteria. According to this theory, both the energy required for crack
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growth and the stress at the crack tip must be satisfied to predict failure; neither criterion
alone is sufficient. By meeting both conditions, a characteristic length scale emerges that
depends on geometry and loading conditions, aligning well with experimental data.

The strength of FFM lies in its reliance on two well-established material pa-
rameters: fracture toughness (or the critical energy release rate) and tensile
strength. This approach has been successfully applied to a broad range of prob-
lems, including the failure of ceramics [Martin et al. 2018, Leguillon et al. 2018], com-
posites [Martin et al. 2012, Doitrand et al. 2017, García et al. 2018], notched specimens
[Leguillon et al. 2007, Cornetti et al. 2013], and bi-material interfaces [Mantič 2009,
Stein et al. 2015, Doitrand & Leguillon 2018c]. A comprehensive review of these applica-
tions can be found in Ref. [Weißgraeber et al. 2016].

Recent developments have extended the theory to three-dimensional cases
[García et al. 2016, Yosibash & Mittelman 2016, Doitrand & Leguillon 2018a,
Doitrand & Leguillon 2018d], nonlinear materials [Leguillon & Yosibash 2017,
Rosendahl et al. 2019, Li et al. 2019, Doitrand & Sapora 2020], 3D-printed polymers
[Xu & Leguillon. 2019], fatigue limit predictions [Liu et al. 2020], and integration with
peridynamics [Zhang & Qiao 2018], further enhancing the utility and accuracy of FFM in
predicting fracture behavior across various materials and conditions.

While theoretical models provide a solid foundation for understanding crack initi-
ation and propagation, applying them to real-world problems often requires numeri-
cal methods to address the complexities of material behavior, geometries, and load-
ing conditions. At the smallest scales currently accessible through computational re-
sources, molecular dynamics (MD) simulations [Rountree et al. 2010] offer valuable in-
sights into crack propagation by using interatomic potentials and detailed atomic struc-
tures, thus avoiding the need for additional numerical parameters. Recent studies
[Aghababaei et al. 2016, Aghababaei et al. 2017] have advanced our understanding of finite-
size effects, revealing a critical transition in wear mechanisms at the atomic scale. Specif-
ically, atomistic simulations show that when asperity contact junctions surpass a critical
size, fracture-induced debris formation occurs, while smaller junctions result in a gradual
smoothing through plastic deformation. This non-linear behavior highlights the crucial role
of length scale in determining whether fracture or plastic smoothing dominates. However,
a key limitation of MD simulations remains their confinement to small simulation box sizes,
which are often much smaller than the physical distances required to fully separate crack
surfaces, leading to finite-size effects that can compromise the result’s accuracy.

Discrete element methods (DEM) [Fakhimi & Wan 2016] provide an alternative by mod-
eling interactions between macroscopic particles through empirical functions, capturing
microscopic structural changes. Similarly, meshfree methods such as smoothed-particle
hydrodynamics [Caleyron et al. 2012] and peridynamics [Bobaru et al. 2016] offer an inter-
nal length scale parameter that introduces spatial and temporal regularization, much like
phase-field methods.

At the continuum scale, the extended finite element method (X-FEM) builds on the
stress intensity factor by incorporating a unified fracture toughness. This approach uses
a series of corrective functions to account for stress regularization [Jan 2016]. In cohe-
sive zone models (CZM), the crack tip extends into the process zone, where cohesive
tractions resist crack opening. Surface traction is modeled as a function of the open-
ing displacement, simulating the failure process in three stages: (i) initiation at a critical
traction value, (ii) thickening, and (iii) local crack nucleation at a critical opening, with
the latter introducing an intrinsic length scale. This approach, pioneered by Barenblatt
[Barenblatt 1959, Barenblatt 1962] and [Dugdale 1960], was first incorporated into finite
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element analysis by Hillerborg [Hillerborg et al. 1976] in civil engineering and later revis-
ited by Needleman [Needleman 1987, Needleman 1990] using micromechanics principles.

One limitation of CZM is the need for a predefined crack path, requiring assumptions
about crack trajectories (e.g., normal to maximum principal stress directions or along grain
boundaries). While advancements allow cohesive elements to be inserted dynamically dur-
ing simulations [Camacho & Ortiz 1996, Ortiz & Pandolfi 1999, Remmers et al. 2003], the
finite element mesh can still restrict the emerging crack path. Nevertheless, CZM was the
first method to explicitly consider the size of the FPZ, making it possible to capture both
stable and unstable crack growth realistically.

Smeared approaches, such as the thick level set (TLS) [Moës et al. 2011] and gradient
damage models [Bourdin et al. 2000, Miehe et al. 2010a], offer potential alternatives. These
models diffuse the crack into the solid volume using an internal length scale. In the TLS
method, fracture topology is determined based on geometrical considerations, whereas in
the phase-field approach, an additional gradient flow equation is solved.

Both the TLS and phase-field methods are rooted in the theory of Continuum Dam-
age Mechanics (CDM) [Lemaitre 1984]. The theory provides a framework for understand-
ing how micro-level damage, such as micro-cracks or voids, affects the macroscopic me-
chanical properties of materials. The field was established by Kachanov [Kachanov 1958],
who introduced the concept of a damage variable to quantify the degradation of mate-
rials based on the density and distribution of micro-defects. The core of CDM involves
constitutive models that describe the stress-strain relationship in damaged materials and
include damage evolution equations derived from thermodynamic principles to predict
the progression of micro-defects to macroscopic failure. While classical CDM effectively
models uniform damage, it struggles with discontinuities like cracks, leading to the devel-
opment of gradient damage models [Pijaudier-Cabot & Bažant 1987, Benallal et al. 1991,
de Borst et al. 1996, Peerlings et al. 1996, Peerlings et al. 1998]. These models introduce a
regularization term that smooths the damage over a finite region, enhancing the ability to
simulate complex failure phenomena such as brittle fracture [de Borst 2002] and localized
damage [Geers et al. 1998]. The community has even suggested techniques to measure the
characteristic length of these nonlocal continuum [Bažant & Pijaudier-Cabot 1989].

The phase-field approach was originally based on the criterion proposed by Griffith
[Griffith 1921, Griffith 1924]. This stationary approach was reformulated by Francfort
& Marigo [Francfort & Marigo 1998], who updated Griffith’s local energy criterion into
a global energy minimization framework. Despite the elegance of this reformulation, a
challenge remained in modeling fracture as a surface domain within a volume. Bourdin
[Bourdin et al. 2000], inspired by the Mumford & Shah [Mumford & Shah 1989] functional,
solved this issue by introducing the crack density function, building on the Ambrosio & Tor-
torelli [Ambrosio & Tortorelli 1990] elliptic regularization function. Essentially, the crack
density function was introduced by Miehe et al. [Miehe et al. 2010a] with an internal length
scale (lc), describing the transition towards the limiting case represented by a Griffith-like
fracture. Since its introduction, the phase-field method has gained significant popularity,
and numerous extensions have been proposed.

These advances in computational methods provide robust tools for simulating fracture
behavior across scales, integrating theoretical insights with numerical simulations to address
increasingly complex material and structural challenges. For a detailed comparison between
numerical methods and mechanical theories, the interested reader is referred to the recent
review paper [Molnár et al. 2025].
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1.3 Open questions
Despite the significant advances in fracture mechanics over the past century, several funda-
mental questions remain unresolved. As the field continues to evolve, understanding crack
initiation and propagation across multiple scales – from the atomic to the macroscopic level
– presents ongoing challenges. The recent development of architected mechanical metama-
terials, which exhibit unique fracture behaviors due to their tailored microstructures, adds
further complexity to this domain. Below are some of the key open questions in failure
mechanics, focusing on macro-scale fracture criteria, atomic-scale origins of failure, and the
challenges posed by architected materials.

Toughness or strength? One of the central challenges in macro-scale fracture mechan-
ics is determining when to apply stress-based versus toughness-based criteria for predicting
material failure [Leguillon 2002]. Stress-based criteria are generally used for small flaws or
defects, where failure occurs at a critical stress level. In contrast, toughness-based criteria
are used for larger defects or cracks, where energy required for crack propagation becomes
the dominant factor. However, the transition between these regimes is poorly understood,
especially for complex loading conditions and materials with heterogeneous properties. Fur-
ther research is needed to define the critical conditions or dimensions where one criterion
becomes more appropriate than the other.

Does a unique regularization length exist? A fundamental question at the macro-
scale involves the regularization length (lc) in phase-field models of fracture. This param-
eter is introduced to facilitate variational techniques in solving complex fracture problems
[Bourdin et al. 2000]. However, it remains unclear whether lc is a numerical artifact or a
true material property. Can lc be physically measured or experimentally validated, or is it
merely a conceptual tool for simplifying the problem?

Is there a correlation between lc and known physical quantities? Additionally,
a question that has persisted since Irwin’s early work [Irwin 1958] is if lc is a real physical
quantity, how it correlates with other material properties, such as fracture toughness, failure
strength, or yield strength. Understanding these relationships is crucial for effectively using
phase-field models to predict fracture behavior.

Can lc be measured experimentally? If lc is indeed a material property, the develop-
ment of experimental techniques to measure it becomes crucial [Réthoré & Estevez 2013].
Additionally, understanding how lc interacts with other dissipative phenomena, such as
plasticity, is vital for applying this length scale in practical contexts.

What is the atomic-scale origin of failure? At the atomic scale, the origins of
material failure are still not fully understood. While atomic-scale simulations, particularly
in metallic glasses [Schuh & Lund 2003], have shed light on the yield criterion, it is unclear
whether these techniques can be extended to more complex materials, such as silicate
glasses. Identifying the atomic-scale mechanisms that drive failure could fundamentally
reshape how we predict and prevent material degradation.

Can atomic-scale simulations predict the failure of materials with complex
microstructures? A key challenge is whether atomic-scale simulations can predict macro-
scopic failure behaviors, particularly in materials with complex microstructures. Can con-
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cepts like toughness, typically considered a nonlocal property, be accurately derived from
atomic simulations? Developing a quantitative, predictive understanding of how atomic-
scale features influence macroscopic fracture behavior could greatly enhance material design.

Can atomic-scale results be upscaled? Another major challenge is bridging the
gap between atomic-scale simulations and experimentally validated macroscopic properties
[Kermouche et al. 2008]. How can atomic-scale data be upscaled to predict real-world ma-
terial behavior? Are there multi-scale modeling frameworks or homogenization techniques
that can bridge these scales? Ensuring the accuracy and applicability of these models
through experimental validation is key to making atomic-scale insights practically useful.

Can the toughness be defined for a given material architecture? Mechanical
metamaterials introduce additional complexities to fracture mechanics. These materials
often exhibit fracture behaviors distinct from conventional materials due to their unique
microstructures. A critical question is whether it is possible to define an effective toughness
for a given material architecture that holds at the macroscopic scale [Fleck et al. 2010].
Can this toughness be homogenized, or is it inherently dependent on the microstructure
and loading conditions? Research is needed to develop homogenization techniques that
account for the interplay between geometry, material properties, and fracture behavior.

Can the toughness be defined by knowing the material’s elementary
strength? For architected materials, which derive their properties from microstructures,
can the overall toughness be predicted by analyzing a representative elementary unit cell?
If so, what conditions or assumptions are necessary for this approach to be valid? Under-
standing whether macroscopic fracture properties can be derived from microscale analysis
will be critical for the design and optimization of metamaterials.

How to optimize mechanical metamaterials? The optimization of architected ma-
terials poses significant challenges, given the vast design space and the complex interplay
between material properties, geometry, and loading conditions. Current optimization meth-
ods [Watts et al. 2019] may not adequately capture these intricate interactions. Developing
more effective optimization strategies that consider these factors could guide the design of
materials with tailored fracture properties, ultimately leading to stronger and more resilient
materials.

These open questions highlight the need for continued research in fracture mechanics,
spanning multiple scales from atomic simulations to macroscopic observations. Resolving
these issues will not only deepen our understanding of material failure but also enhance
our ability to design innovative materials and structures that are both stronger and more
resilient.

1.4 Thesis statement
This manuscript explores the intricate role of length scales in fracture mechanics, focusing
on how material failure manifests across multiple scales, from the microscopic to the macro-
scopic. It aims to bridge the gap between theoretical models and practical applications by
employing advanced methods such as phase-field techniques and atomic-scale simulations
to analyze various fracture modes. By examining both mechanical and physical factors
that influence failure, this research seeks to develop a deeper understanding of how inter-
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nal length scales impact crack propagation, toughness, and strength in different materials.
The study not only advances the field of fracture mechanics but also contributes to the
optimization of architected materials and structural systems. Through the integration of
coupled-criteria and phase-field models, it provides valuable insights for more accurately
predicting material failure, with important implications for designing more resilient and
efficient structures across diverse engineering applications.





Chapter 2

Lengths in Fracture at the
Continuum Scale

The chapter examines the significance of internal length scales in fracture, focusing on
Irwin’s length in finite fracture mechanics and phase-field regularization. By comparing the
phase-field method with the coupled criterion, the chapter illustrates how these length scales
affect crack initiation, propagation, and material strength in tensile, shear, and antiplane
fracture modes. Dynamic fracture simulations underscore the importance of regularization
in accurately capturing crack speed and branching.
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2.1 Motivation
Initially, the parameter lc was introduced to aid numerical methods in solving frac-
ture problems and to eliminate the mesh dependency of crack paths. However,
[Pham & Marigo 2010a, Pham & Marigo 2010b] postulated that lc should be separately
identified, as it represents the material’s internal length scale – a concept further ex-
plored in works such as [Freddi & Royer-Carfagni 2010, Pham et al. 2011, Piero 2013].
More recently, several studies have calibrated lc to match the maximum load at fail-
ure observed in experiments [Nguyen et al. 2016c, Tanné et al. 2018, Kumar et al. 2020].
Researchers like Nguyen et al. [Nguyen et al. 2016b, Nguyen et al. 2016a] have even em-
ployed microtomography to identify the extent of micro-damage regions surrounding dis-
crete cracks. Subsequent works [Zhang et al. 2017, Tanné et al. 2018, Kumar et al. 2020,
Kumar & Lopez-Pamies 2020] demonstrated that the variational formulation of fracture
mechanics can effectively bridge stress-based and toughness-based criteria. This approach
allows phase-field methods to regularize the infinite critical load at infinitesimal crack
lengths, as defined by the Griffith criterion, successfully reproducing size effects that have
been observed experimentally for decades [Bažant 1997, Issa et al. 2000, Chudnovsky 2014].

While these seminal studies established that lc is essential for accurately calculating
critical loads in the presence of cracks, they primarily used the homogeneous solution in uni-
directional tension to correlate lc with the material’s intrinsic strength [Tanné et al. 2018].
However, they did not extend their analysis to provide a simple mechanical theory that
explains the transition and size effects.

This chapter aims to provide a more nuanced understanding of the elementary mech-
anisms introduced by the phase-field approximation. It draws a comparison between the
variational phase-field approach and the coupled criterion [Leguillon 2002], one of the first
theories to offer an elegant and straightforward explanation of the well-known size effect.
This comparison is crucial, as the mechanism underlying phase-field simulations has not
been fully explored yet.

Our goal is to deepen this comparison and evaluate the similarities between the phase-
field method and the coupled criterion in terms of critical loads, crack topology, and initia-
tion spacing in both unstable and stable crack initiation scenarios across the three fracture
modes [Irwin 1958, McClintock & Irwin 1965]. This analysis sheds light on how the length
scale parameter lc influences the mechanical behavior of materials, thereby advancing our
understanding of its role in phase-field models.

2.2 Irwin’s length in finite fracture mechanics
The coupled criterion is an elegant tool used in finite fracture mechanics to model the effect
of a length scale on crack initiation and propagation. This approach combines an energy
condition with a stress-based comparison. For a crack to initiate or propagate, both criteria
must be satisfied at the same increment length under the same loading condition.

The energy release rate (G) is determined through a balance between the states before
and after the crack jump. In most cases, phononic dissipation is neglected, and quasi-static
conditions are assumed. Two options are commonly used to calculate the energy release
rate.

The first is called the incremental value, where G is considered constant during initiation
and propagation:

Ginc(a0 + ∆a, P ) = −Ψint(a0 + ∆a, P )−Ψint(a0, P )−∆Wext (F, u)
∆a ≥ gc, (2.1)
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where Ginc is the incremental energy release rate, Ψint is the elastic strain energy, ∆Wext
is the external work, and P represents the applied displacements (u) or external forces (F )
on the boundaries. It reverts to the Griffith definition of the energy release rate when the
incremental crack length tends towards ∆a → 0. Here, a0 is the initial crack length, and
∆a is the unknown crack increment.

The second approach assumes that the energy release rate varies during propagation.
Consequently, the differential energy release rate G can be defined as:

G(a0 + ∆a/2, P ) = −∂Ψ (a0 + ∆a/2, P )
∂a

≈ −Ψint(a0 + ∆a, P )−Ψint(a0, P )−∆Wext (F, u)
∆a ≥ gc.

(2.2)

In practice, the incremental approach is used to determine the initiation state, and the
differential quantity is used to determine where the crack potentially stops [Leguillon 2002].
When ∆a→ 0, the incremental value converges to the differential G.

The second requirement for propagation is given by the stress criterion. We assume
that the elastic stress around the crack tip along the expected crack path (described by its
curvilinear abscissa s) exceeds the material’s tensile strength:

σt (a+ s, P ) ≥ σc,∀ 0 ≤ s ≤ ∆a, (2.3)

where σt is the tangential stress perpendicular to the crack’s opening direction, and σc is
the material’s tensile strength.

For stable initiation, both the energy and stress functions decrease monotonously with
crack advancement, making the energy release rate determine the initiation state. However,
for unstable initiation, the energy criterion is an increasing function, while the stress crite-
rion is a decreasing one. As a result, the energy criterion provides a minimum crack length,
setting a lower bound where the condition is satisfied, while the stress criterion provides a
maximum distance, setting an upper bound for admissible initiation crack lengths.

To satisfy both criteria simultaneously, the load is increased so that the initiation length
predicted by the energy criterion decreases until it matches the value given by the stress
criterion. A key conclusion of the coupled criterion is that a finite crack length ∆a is created
abruptly at initiation to satisfy both the strength and energy requirements. Consequently,
the coupled criterion allows the determination of the critical load Pc at which the crack
initiates:

Pc = min
[
P,∃∆a,min

(
Ginc(a0 + ∆a, P )

gc
,
σ(a0 + ∆a, P )

σc

)
≥ 1
]
, (2.4)

as well as the admissible initiation lengths ∆ac:

∆ac =
[
∆a,min

(
Ginc(a0 + ∆a, Pc)

gc
,
σ(a0 + ∆a, Pc)

σc

)
≥ 1
]
. (2.5)

In practice, both the energy release rate and the stress fields can be obtained analytically
or through finite element methods. Under the assumption of small deformations in a linear
elastic framework, only one elastic calculation is needed to compute the stress condition,
whereas calculating the energy criterion requires multiple elastic calculations with varying
crack lengths. An example is provided in Appendix A.1.

The introduction of the stress criterion reveals the emergence of a characteristic length,
such as arrest length or characteristic crack spacing [Faria Ricardo et al. 2020]. This
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length is often linked to Irwin’s length [Leguillon & Yosibash 2003, Martin et al. 2018,
Molnár et al. 2024], which is one of the simplest ways to introduce a length scale in frac-
ture mechanics. Irwin’s length relates Young’s modulus (E), fracture toughness, and tensile
strength using the following formula [Irwin 1958]:

lmat = Egc
σ2
c

. (2.6)

Interested readers are referred to the original paper on the coupled criterion
[Leguillon 2002] or a recent review [Doitrand et al. 2024] for more detailed information on
its theory and history.

2.3 Phase-field regularization length scale
The fundamental concept underlying phase-field models for fracture is to approximate the
crack discontinuity using a smeared damage field (d). Typically, a single length scale pa-
rameter (lc) is introduced to govern the extent of damage penetration within the material.
The most basic phase-field model balances elastic energy with diffused fracture energy to
determine the energetically favorable crack front. Various versions of the model exist, but
they share common inputs: fracture toughness gc and the regularization length lc.

Originally, the damage diffusion and lc were introduced to regularize the discrete crack
problem posed by linear elastic fracture mechanics, making it solvable through variational
methods. However, it quickly became evident that this enrichment enabled the phase-field
technique to model a wide range of fracture phenomena that were previously inaccessible
to other numerical methods, while still reverting to Griffith’s theory when lc approaches
0. This provides a unified framework that connects the widely used stress/strength-based
approach with classical fracture mechanics.

2.3.1 Phase-field principles
Bourdin et al. [Bourdin et al. 2000, Bourdin et al. 2008] introduced the currently widely
used theory for modeling fracture using variational methods. This theory is fundamen-
tally based on the concept of damage mechanics [Kachanov 1958] and the regularization
of discontinuities with a continuous field [Ginzburg & Landau 1950, Cahn & Hilliard 1958].
The new approach replaced the discrete fracture surface, as originally formulated by Grif-
fith [Griffith 1921, Griffith 1924], within the variational framework proposed by Francfort
& Marigo [Francfort & Marigo 1998]. Instead of a discrete crack surface, a continuous
damage density function was employed. This transformation of the original minimization
problem involved the use of the Mumford and Shah functional [Mumford & Shah 1989],
a specific case within the broader Ambrosio and Tortorelli elliptic regularization frame-
work [Ambrosio & Tortorelli 1990].

The phase-field fracture model is based on a diffuse representation of localized discon-
tinuities, where the crack surface is approximated using a damage variable (d) that ranges
from 0 to 1. A value of 0 represents an undamaged domain, while a value of 1 indicates a
fully formed crack where the material has lost all resistance and stiffness. This approach
allows for a gradual transition from an intact material to a fully fractured state, enabling
the simulation of crack initiation and propagation without explicit crack tracking.

The evolution of damage in phase-field models is governed by a system of partial dif-
ferential equations, typically coupled with the material’s mechanical behavior – initially,
linear elasticity. As damage progresses, it influences the material’s mechanical response,
leading to the initiation and propagation of cracks. Fundamentally, the energy of the solid
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body, as represented in eq. (2.7), is minimized. The accumulation of elastic energy drives
the formation of damage and the subsequent opening of cracks.

This section presents the underlying mathematical and physical framework of the phase-
field approach for modeling regularized brittle fracture. The different energy contributions
from individual phenomena are described, followed by an explanation of the staggered solu-
tion for solving the weakly coupled problems. Additionally, a bound constraint optimization
scheme is introduced to enforce damage irreversibility. Finally, key implementation details
are provided.

The energy functional for the complete two-field problem is represented by the following
Lagrangian function:

L = Wext (u)−Ψ (u, d) , (2.7)
where Ψ (u, d) represents the internal energy, containing the elastic energy (Ψel) and fracture
energy contributions (Ψd):

Ψ (u, d) = Ψel (u, d) + Ψd (d) . (2.8)
Wext (u) represents the external work:

Wext =
∫

Ω
γ · udV +

∫
∂Ω

t · udA, (2.9)

where γ and t are the prescribed volume and boundary forces, respectively, as shown in
Fig. 2.1b.

All internal energy components depend on either the phase-field variable (d) or the
displacement field (u) and its spatial derivatives.

The total energy used up in crack formation is expressed as:

Ψd (d) = Γgc =
∫
Γ

gcdΓ ≈
∫
Ω

gcγΓ (d,∇d) dΩ, (2.10)

where Γ is the size of the discrete crack surface, gc is Griffith’s [Griffith 1921] critical energy
release rate, and γΓ is the crack surface density:

γΓ (d,∇d) = 1
cωlc

[
ω (d) + l2c |∇d|

2
]
. (2.11)

In the literature, various crack representations exist. The geometric function (ω) largely
controls the topology of the phase-field solution. The most widely used models are the
AT1 [Pham et al. 2011] and AT2 [Bourdin et al. 2000, Miehe et al. 2010a] representations.
In the AT1 approach, ω (d) = d, while for AT2, ω (d) = d2. Additionally, Wu [Wu 2018]
proposed a mixed representation that yields cohesive zone model-like behavior.

The total integral over the simulation domain of the crack surface density function
should yield the theoretical value of the discrete representation. Depending on the model,
γΓ is normalized by the constant cω:

cω = 4
∫ 1

0

√
ω (s)ds, (2.12)

with cω = 8/3 for AT1 and cω = 2 for AT2 models. Fig. 2.1a illustrates the basic concept of
diffuse damage models with the 1D analytical solutions for AT1 and AT2 representations.

The advantage of AT1 compared to AT2 is that it has an elastic threshold before failure,
whereas in AT2 models, damage appears at any loading level. However, AT1 models require
special treatment to enforce positive damage values and ensure damage irreversibility.
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Figure 2.1: (a) 1D bar with a crack in the middle and a cross section Γ. Below is the
damage field with a sharp crack at x = 0 and the diffuse representation with models AT1
(black) and AT2 (red) with the length scale parameter lc. (b) Schematic illustration of the
staggered solution used to solve the coupled mechanical and fracture problem.

2.3.2 Energy decomposition
The principal idea of damage mechanics is that damage reduces the elastic strain energy,
thereby weakening the material’s resistance and stiffness. As a result, the elastic strain
energy contribution can be expressed as follows:

Ψel (u, d) =
∫
Ω

ψ (u, d) dΩ, (2.13)

where ψ is the strain energy density. To avoid fracturing under compression, ψ is split into
two parts:

ψ (u, d) = g (d)ψ+
0 (ε (u)) + ψ−0 (ε (u)) , (2.14)

where g (d) is the energy degradation function. The simplest and most commonly used
function is:

g (d) = (1− d)2 + k, (2.15)
with k being a small number (10−12) that conditions the solution. This function must
satisfy several basic conditions: (i) it is 0 at d = 0 and 1 at d = 1, (ii) it is continuous and
monotonic in this range, and (iii) its derivative is 0 at d = 0.

The subscripts in eq. (2.14) refer to the tensile (+) and compressive (−) energies. The
degradation function is applied only to the tensile part to avoid crack opening under com-
pression, ensuring that compression does not contribute to the crack-driving force.
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As highlighted previously [Molnár et al. 2020b], this technique suffers from a critical nu-
merical issue, usually addressed by introducing a small perturbation: when two eigenvalues
out of three are equal, the solution becomes singular. One might assume that this only
occurs in rare cases, but common examples such as uniaxial or equibiaxial configurations
fall into this category. This paper details how we updated [Molnár et al. 2022] the original
spectral decomposition technique to provide a more robust and faster solution.

To stabilize the solution, we first expressed the complete stiffness tensor in the principal
directions and then rotated it back to the original reference system:

C = T−1
σ ĈTε. (2.16)

Here, Ĉ is the stiffness matrix in the principal directions, while Tε and Tσ are rotation
matrices in Voigt notation, compiled from the original basis of the strain tensor.

The stiffness matrix in the principal directions can be written as a block matrix:

Ĉ =
[

L 0
0 S

]
, (2.17)

where L is the well-known 3x3 matrix [Bernard et al. 2012] deduced from the potential
energy:

L = ∂2ψ

∂ε̂2 , (2.18)

with ε̂ referring to principal strains. As there is no shear strain in the principal directions,
the shear term S is often omitted from descriptions, but it can be obtained via numerical
experimentation. We found that for all stable cases (ε1 6= ε2 6= ε3), this block reduces to a
3-component diagonal matrix where damage affects the shear stiffness components through
a linear combination of the corresponding in-plane principal strain values.

2.3.3 Damage irreversibility
Various methods have been proposed to resolve the coupled mechanical and fracture
problem [Chaboche et al. 2001, Lorentz & Benallal 2005, Miehe et al. 2010a, Wick 2017,
Wu & Huang 2020]. In the present implementation, the weakly coupled equations are solved
in a staggered manner [Miehe et al. 2010b, Molnár & Gravouil 2017]. When searching for
the mechanical solution, the damage variable is kept constant. The results presented in this
document were obtained either by creating custom finite elements using the commercial fi-
nite element software Abaqus/Standard [ABAQUS 2011], or by utilizing in-house MATLAB
subroutines.

One of the standard approaches for enforcing the irreversibility constraint (ḋ ≥ 0) in
AT2 models is to replace the crack-driving function (elastic tensile strain energy) with
a history field [Miehe et al. 2010b]. This history variable corresponds to the maximum
elastic energy over the full temporal history. Although there is no formal proof that this
approximation fully enforces the irreversibility of the damage, it is widely used due to its
simplicity. In our previous implementations [Molnár & Gravouil 2017, Molnár et al. 2020b,
Jaccon et al. 2023], we also employed Miehe’s technique. However, it should be noted that
if the gradient term in eq. (2.11) increases, d must decrease for a constant H, which locally
violates the irreversibility condition.

Various methods have been developed to enforce damage irreversibility in
phase-field models of fracture. One such approach is the penalty method
[Gerasimov & De Lorenzis 2016], which introduces an additional term into the total energy
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functional to penalize any violation of the irreversibility constraint. This method prevents
damage from decreasing by making any healing energetically prohibitive. However, the
choice of the penalty coefficient is critical, as an inappropriate value can lead to numerical in-
stability. In contrast, the projected successive over-relaxation method [Mangasarian 1977],
framed as a symmetric linear complementarity problem [Marengo et al. 2021], offers a more
direct enforcement of irreversibility. By explicitly projecting the phase-field increments onto
non-negative values during each iteration, the method ensures that damage always increases
or remains constant, resulting in improved computational efficiency and stability compared
to the penalty method.

For the results presented herein, we enforced a positive damage increment using La-
grange multipliers. Wheeler et al. [Wheeler et al. 2014] recently proposed an augmented
Lagrangian method to solve the bound-constrained optimization of the phase-field prob-
lem. This approach was later applied to approximate cracks under dynamic and cohesive
fracture conditions [Geelen et al. 2019]. However, due to limitations in the Abaqus/UEL
framework, such as the lack of access to global residual and stiffness arrays, we employed
the computationally more expensive Lagrange multiplier technique [Lu et al. 2020].

To introduce the Lagrange multipliers, the original Lagrangian equation was modified
as follows:

L = Wext (u)−Ψ (u, d) +
∑

λjfj (d)
j={dn>dn+1}

, (2.19)

where the functions fj contain the inequalities that enforce the lower bound of the nodal
damage values:

f (dn+1) = −dn+1 + dn ≤ 0. (2.20)

In eq. (2.19), the index j denotes the active constraints (where dn > dn+1), and λj are
the Lagrange multipliers.

Further details about the mathematical theory of the phase-field formulation
can be found in our recent papers [Molnár & Gravouil 2017, Molnár et al. 2020b,
Molnár et al. 2022].

2.3.4 Homogeneous solution
The simplest way to analyze the phenomenological effect of gc and lc is by calculating the
homogeneous solution of eq. (2.7). When the gradient term is neglected in eq. (2.11), the
solution simplifies, allowing the damage to be expressed directly as a function of the elastic
strain energy. The most common result is the stress-strain curve under uniaxial tension,
as shown in Fig. 2.2a. However, the maximum achievable stress during deformation is
influenced by the ratio of the principal stresses.

The tensile strength (σc) of a material is defined as the maximum tensile stress (σ1) it can
withstand before failure. When the gradient term is neglected, the homogeneous solution
for the tensile strength in the case of an AT2 representation can be derived from the material
parameters as follows: σc =

√
27Cgc
256lc for unidirectional extension, where C = E(1−ν)

(1+ν)(1−2ν) ,
with E as Young’s modulus and ν as Poisson’s ratio. This relationship can be generalized
as:

σc
.= σmax

1 = η

(
ν,
σ2

σ1
,
σ3

σ1

)
·
√
Egc
lc

, (2.21)
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Figure 2.2: Homogeneous solution for problem AT1 and AT2: (a) First principal stress
as a function of the first principal strain; (b) meridian slices for different Lode angles; (c)
AT1 model for in-plane stress conditions and different values of Poisson’s ratio; (d) failure
surfaces in the space of principal stresses.

where the function η accounts for the effects of the stress state and Poisson’s ratio. More-
over, atomic-scale simulations have shown [Molnár et al. 2016b] that the response of brittle
materials (e.g., silica) under tension may depend not only on the hydrostatic stress state
but also on the Lode angle (the angle of the deviatoric plane). Therefore, the material’s
resistance should be described with a three-dimensional failure or yield surface.

Fig. 2.2d shows the failure surface in the space of all three principal stresses for the
AT1 and AT2 models with identical phase-field parameters. Fig. 2.2b and (c) depict the
maximum surface under plane stress conditions (σ3 = 0) and slices of the meridian planes
(constant Lode angle). The plotted surfaces resemble a Rankine criterion [Rankine 1857]
with rounded corners. Indeed, when ν = 0, the phase-field solution approximates a Rankine-
type surface with circularly rounded edges in the tensile domains.

Since the AT2 model lacks an elastic threshold, it consistently shows lower strength
compared to the AT1 formulation. Furthermore, the tensile meridians are weaker than
their compressive counterparts.

The algorithm to calculate the maximum stress as a function of Poisson’s ratio and the
principal stress state is available as a Supplementary File in Ref. [Molnár et al. 2022]. The
homogeneous solution can provide an initial estimate for lc based on the measured material
strength [Molnár et al. 2020a].

2.4 Length scales in fracture
Even though Irwin initially cautioned the community about the limitations imposed by
Griffith’s original theory and his stress intensity factor [Irwin 1958], the stress intensity
factor became synonymous with toughness measurement in engineering materials. Irwin
demonstrated among the first that when the size of the sample is sufficiently small, the
normalized resistance (and thus the strength) of the material is independent of the char-
acteristic size. However, as the diameter of the sample exceeds a certain threshold, the
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average stress at failure significantly decreases. He therefore defined two regions: the
first, where the size of the defect or sample is small, and the second, where the setup
is suited to fracture mechanics and, consequently, the use of the stress intensity factor.
His original figure is reproduced in Fig. 2.3a. Irwin also classified crack types based on
the applied loading. In the context of linear elastic fracture mechanics, loading near a
preexisting crack can be decomposed into three modes: mode I, corresponding to tensile
opening; mode II, corresponding to in-plane shear; and mode III, corresponding to antiplane
shear [Irwin 1958, McClintock & Irwin 1965].

For example, when in-plane shear is applied, the original crack front bifurcates, and a
new crack forms at a specific angle. It is noted that this angle depends on the geometry
and material being loaded [Richard et al. 2014] and has been observed to vary between
63− 71◦. The experimental observation in Fig. 2.3b, taken from glass, is reproduced from
Ref. [Erdogan & Sih 1963].

The most complex case occurs when a mother crack is subjected to shear perpendicu-
lar to its original direction. Instead of simply propagating horizontally, the original crack
fragments into facets, known as daughter cracks. These newly formed cracks interact and
eventually form the macroscopically observed fracture pattern. An example of this phe-
nomenon is demonstrated in Fig. 2.3c using a gelatinous solid, caramel flan. It is important
to note that this behavior has been observed in various other materials as well.

In summary, linear elastic fracture mechanics explains only a limited portion of the
physical phenomena observed in nature, and its limitations should be properly understood
to avoid misuse in practice. Therefore, this chapter is dedicated to the three elementary
fracture modes, which will be analyzed through the lens of the phase-field technique and
the coupled criterion. Here, we present only the key results. For modeling details, we refer
to our previous papers [Molnár et al. 2020a, Molnár et al. 2024].

2.4.1 Tensile opening in an infinite plane

Perhaps the simplest way to demonstrate the size effect in fracture mechanics is by analyzing
an infinite homogeneous plane subjected to uniform tensile stress applied at infinity. A single
straight crack of length 2a0 is positioned in the center. The advantage of this elementary
case is that both the stress field and the energy release rate are available analytically.

Coupled criterion. For the coupled criterion, the stress on the x axis (y = 0) measured
from the crack tip can be calculated using the following equation [Sun & Jin 2012]:

σy (x) =
σ0
y (x+ a0)√
x (x+ 2a0)

, (2.22)

where σ0
y is the tensile stress acting on the solid body at infinity.

The energy-based criterion states that a crack advances when the released potential
energy from the creation of a unit crack surface exceeds a material’s critical energy release
rate, as postulated by Griffith. This critical energy release rate is a material constant unique
to each material. The criterion is written as a stability condition for unit thickness:

d

da
(Ψd −Ψ) = 0, (2.23)

where Ψ is the additional elastic strain energy induced by the stress concentration around
a pre-existing crack:
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Figure 2.3: Elementary modes of fracture. First row presents experimental results: (a) size
effect in tensile samples [Irwin 1958]; (b) crack deviation in shear [Erdogan & Sih 1963]; and
(c) echelon cracking in solids (experiment done in collaboration with Aurélien Doitrand on
a caramel flan). Second row present simulation results: (d) critical tensile loading as a
function of the initial crack length with both method; (e) initiation angle in in-plane shear
as a function of the initial crack length with the phase-field method; (f) echelon crack
formation in pure antiplane shear conditions.

Ψ = π(a0 + ∆a)2

8µ (κ+ 1) (σ0
y)2, (2.24)

and W is the fracture energy consumed by the crack’s creation:

Ψd = 2gc (a0 + ∆a) . (2.25)
In eq. (2.24), µ is the shear modulus, and κ = 3−4ν for the plane strain case. Eq. (2.23)

can be rewritten to yield the differential energy release rate:

G = π (a0 + ∆a)
8µ (κ+ 1) (σ0

y)2 = gc. (2.26)

The incremental energy release rate can be calculated by averaging G over ∆a or recal-
culating the difference between two distinct states, giving the following:

Ginc = π (a0 + ∆a/2)
8µ (κ+ 1) (σ0

y)2 = gc. (2.27)

This equation highlights a few important points. First, when a0 + ∆a = 0, meaning
no crack is present, the energy release rate is zero. Thus, the load applied at infinity can
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be infinitely large, independent of the fracture toughness. Second, when reformulated, the
critical loading as a function of the initial crack length follows a hyperbolic square root
function, consistent with linear elastic fracture mechanics.

By equating the critical distance from the incremental energy release rate with the
critical distance where the stress criterion is satisfied, we can express the loading required
for crack propagation. It is worth noting that the critical load depends not only on the
material’s strength and fracture toughness but also on the geometry (initial crack length).
Thus, the size effect can be captured with this formulation. The critical loading for a given
set of E, gc, and σc is shown in Fig. 2.3d (red solid line). It can be observed that for
sufficiently large cracks, the coupled criterion results converge with predictions from linear
elastic fracture mechanics. For small cracks, the values converge to a single strength value,
demonstrating a smooth transition between behaviors without the need for plasticity.

Phase-field. To model the same problem using the phase-field approach, a d̂ = 1
Dirichlet boundary condition was prescribed on the initial crack. This phase-field value
is necessary because creating a crack requires more energy than propagating an existing
damage field [Klinsmann et al. 2015, Sargado et al. 2018, Tanné et al. 2018].

The results obtained using the finite element method and the phase-field method were
influenced by both spatial and temporal discretization. Thus, a convergence study was
conducted to minimize numerical errors.

The time step was automatically controlled, with the local potential energy increment
constrained by the following condition:

dψ+
0 ≤ ξ ·

gc
cωlc

, (2.28)

where ψ+
0 is the elastic (undamaged) strain energy used in staggered schemes

[Molnár et al. 2022], and ξ is a scalar multiplier set to 50%.
Fig. 2.3d presents a similar size effect as observed with the coupled criterion, showing

critical stresses as a function of the initial crack length. The phase-field method successfully
reproduced the same size effect observed experimentally. Furthermore, deviations from
linear elastic fracture mechanics (LEFM) occur when the initial crack size approaches or
becomes smaller than lc.

The results in Fig. 2.3d are significant because they demonstrate that introducing crack
diffusion (via the length scale lc) does not undermine Griffith’s original description but
rather adds a powerful tool for capturing real-life physical phenomena. While the choice of
phase-field representation affects model behavior, it is essential to recognize that lc carries
a real mechanical meaning.

Multiple simulations were performed with a = 0 in the phase-field calculation to deter-
mine the correlation between tensile strength and the length scale. In this case, the initial
damage field was prescribed only at a single node. As previously explained, the critical
initiation stress corresponds to the material’s strength, enabling a direct comparison for
various length scales in the phase-field method. The critical stress results are shown as a
function of lc in Fig. 2.4a, along with the homogeneous solution from eq. (2.21) for uni-
axial tension (with principal stress ratios σ2/σ1 = 0, σ3/σ1 = 0, and ν = 0.37). A clear
correlation between the two quantities can be observed. As lc decreases, tensile strength
increases and tends toward infinity, which is consistent with Griffith’s original solution, as
the critical loading tends to infinity when a→ 0.
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2.4.2 In-plane shear fracture
After assessing the critical stress for the two methods as a function of the initial crack length,
this section focuses on the crack’s topology, specifically the branching angle. For in-plane
shear fracture, predicting the initiation angle remains an unresolved question. Many theo-
ries have been proposed, based on maximum tangential stress [Erdogan & Sih 1963], strain
energy density [Sih 1974], energy release rate [Wu 1978, Hayashi & Nemat-Nasser 1981],
and stress intensity factors [Leblond 1989, Amestoy & Leblond 1992]. Some of these mod-
els successfully reproduce specific experiments [Erdogan & Sih 1963], but none provide a
universal law valid for all materials [Ayatollahi & Aliha 2009, Richard et al. 2014].

We hypothesize that variations in initiation come from differences in regularization
length, particularly the ratio of strength to toughness. Therefore, we set out to analyze
the initiation using both the coupled criterion and the phase-field method to establish a
correlation based on these parameters.

Coupled criterion. Unfortunately, no analytical solutions are available to test the
coupled criterion for mode II fracture. Only certain aspects of the stress and energy fields
are known. The elastic stress field around the initial crack tip is described in various
textbooks [Broek 1982, Sun & Jin 2012], while the energy release rate is available only for
the case where θ = 0.

To address this, we followed the modeling strategy below: first, finite element calcula-
tions were performed with varying crack lengths in different directions (−90◦ ≤ θ ≤ 0), and
then the global energy difference was calculated for each crack increment. Finally, empirical
functions were fitted to the results.

We identified that the critical stress defined by the Griffith criterion for pure shear
fracture is:

τ0,c
xy =

√
8µgc

fca0π (κ+ 1) , (2.29)

where fc = 1.504 corresponds to the local extremum (saddle point) in the direction θ =
−75.74◦. The boundary shear stresses (τ0

xy) acted on the sides at infinity, and the initiation
angle θ was measured from the horizontal axis. These results correspond well with previous
analytical solutions [Wu 1978].

For mode I, the crack path is assumed to be known. However, for mode II fracture,
both the critical shear stress and the initiation angle are unknown. Unlike mode I, where
only the critical stress and initiation length are required, mode II requires determining the
spatial intersection of two curves: one where the stress criterion is satisfied and the other
where the energy criterion is met.

As a result, we found that the crack could initiate in multiple directions, with the
propagation angle depending on the material and geometry, ranging between θ = −45◦
and −75.74◦. This observation aligns well with the experimental results of Richard et
al. [Richard et al. 2014].

Phase-field. To test the hypothesis established using the coupled criterion, phase-field
calculations were conducted.

Due to the diffused nature of the crack, determining its exact path at re-initiation was
challenging. Therefore, to extract the initiation angle, we identified the local maxima of the
damage field at a distance larger than lc. These positions were then fitted with a third-order
polynomial, which was extrapolated to the crack lips.
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This section focuses on the crack topology rather than the critical stress, as the case
with a0 = 0 is equivalent to the geometry presented in the first section, but with a different
σ2/σ1 ratio. Only the limit cases were compared. We found that for small cracks, the
homogeneous solutions matched well with the critical values obtained from the phase-field
model. In the case of larger a0, the results closely matched Griffith’s solution (eq. 2.29).

Compared with tensile strength, the advantage of the length scale parameter is that
it introduces an internal size. Fig. 2.3e shows the initiation angle as a function of the
dimensionless initial crack length, a0/lc. This indicates that both crack initiation and
propagation depend only on the ratio of the original crack length to lc, which corresponds
well with the energy landscape defined by the coupled criterion.

For large a0, the crack initiates at an angle around ∼ −73◦, consistent with the values
obtained using the coupled criterion. On the other hand, for large lc values, the crack
inclination is −45◦, which agrees with both theoretical and coupled criterion perspectives.

For a given initial crack length, the inclination angle is sensitive to the chosen σc values.
To establish the correlation between lc and σc based on the initiation angle, a0 was varied.
First, we determined a range of a0 for a given σc, where the initiation angle lay between
−61◦ and −46◦. We then subdivided the obtained a0 interval and calculated θc. Each
initiation angle was interpolated between the phase-field results to obtain a normalized
length scale. Finally, this value was multiplied by the initial crack length to determine lc
as a function of σc and θc.

Fig. 2.4a shows the correlation between lc and σc. It can be observed that the topological
correlation agrees with the homogeneous solution (based on critical stress).

2.4.3 Antiplane echelon cracking
The quantitative understanding of fracture under antiplane shear (mode III) is rela-
tively obscure compared to modes I and II, primarily due to the complexity and 3D
nature of the crack propagation pattern. While propagation in modes I and II gener-
ally occurs smoothly and can be addressed using a 2D elasticity problem, mode III load-
ing often results in the fragmentation of the crack into numerous facets with complex
3D shapes [Sommer 1969, Knauss 1970, Lazarus et al. 2008, Pham & Ravi-Chandar 2014],
making accurate prediction of its morphology challenging.

The first well-controlled experiments demonstrating crack facet segmentation were
conducted by [Sommer 1969] using glass. Around the same time, [Knauss 1970]
and later [Palaniswamy & Knauss 1978] showed the formation of semi-penny-shaped
cracks under pure mode III conditions. Since the 1970s, researchers have demon-
strated that the appearance of daughter cracks is independent of the material, oc-
curring during tectonic plate movement [Pollard et al. 1982, Cox & Scholz 1988], moun-
tain orogeny [Younes & Engelder 1999], and in materials such as polymers [Hull 1994,
Lazarus et al. 2008, Lin et al. 2010, Chen et al. 2015], gels [Ronsin et al. 2014], gypsum,
and even cheese [Goldstein & Osipenko 2012].

The mode III problem can be addressed at two scales. At the macroscopic scale, crack
propagation is governed by the principle of local symmetry or the maximum energy re-
lease rate criterion [Amestoy & Leblond 1992], meaning that in mixed mode I+III, the
crack propagates globally in a horizontal direction [Sommer 1969]. In bending experi-
ments, mode II changes sign across the front, causing opposite tilt angles so that the
front appears to rotate progressively until it aligns perpendicularly to the bending direc-
tion [Lazarus et al. 2008].

On the microscopic scale, however, the crack tip undergoes fragmentation into facets
due to local mode III opening. These facets initiate at an angle to the main crack and
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gradually coalesce during propagation, creating a jagged macroscopic surface. While
the macroscopic problem is relatively straightforward to model [Gravouil et al. 2002,
Citarella & Buchholz 2008, Wu & Huang 2020, Molnár et al. 2022], the phenomenon at the
micro-scale is more complex. Therefore, this chapter focuses specifically on the micro-scale
initiation of facets under pure mode III loading.

Consider a planar crack with a straight crack front within an infinite linear elastic
medium characterized by Young’s modulus (E), Poisson’s ratio (ν), and critical fracture
energy (gc). Our objective is to study crack propagation under increasing mode III loading,
denoted as KIII, applied uniformly along the crack front.

Coupled criterion. The main challenge in implementing the coupled criterion is iden-
tifying an appropriate parameter space that describes the crack opening while satisfying
both the energy and stress criteria.

As suggested by previous studies [Leguillon 2014, Doitrand & Leguillon 2018b], the
crack path can be determined by analyzing stress isocontours around the main crack in the
absence of segments, establishing a lower bound for surface opening. To calculate the tensile
stress at a specific point in space, we used the analytic, singular solution for an elastic body
with a large crack, where r � a0 (with a0 as the initial crack length) [Westergaard 1939]:

σθ (r, θ, φ) = KIII√
2πr

cos
(
θ

2

)
sin (2υ) , (2.30)

where the stress is described in polar coordinates, with r as the distance from the crack tip,
θ as the angle in the crack plane, and υ as the inclination angle.

Cracks form in regions where σθ ≥ σc. This region can be represented as an isosurface
that outlines where crack opening is possible. For simplicity, we assume the instantaneous
formation of a planar crack, defining a two-dimensional surface within this isosurface by
intersecting it at υ = 45◦, where tensile stress is maximal. The surface area is expressed in
dimensionless form as:

KIII

σc
4
√

∆S
= f(υ), (2.31)

where f(υ = 45◦) ≈ 2.207. This shape is qualitatively similar to experimental obser-
vations [Pham & Ravi-Chandar 2016] and phase-field simulations, making it a reasonable
choice.

This crack shape allows us to characterize the crack opening using two variables: (i) the
surface area of the crack (∆S) and (ii) the distance between crack segments (Λ).

For mode III loading, the stress field is already known, but the incremental energy
release rate for crack opening must be determined as a function of the crack parameters
(∆S, Λ). A series of finite element calculations were performed to compute the potential
energy for increasing crack opening ∆S. We found that the normalized incremental energy
release rate as a function of normalized crack surface area (∆S/Λ2) has a local maximum,
with the position (∆S̃max) and amplitude (G̃max) depending on Poisson’s ratio.

The goal is to determine the characteristic initiation distance between facets (Λ). Since
G̃max is independent of the initiation distance, we can use it to calculate the critical load
for a given Poisson’s ratio. The energy release rate at facet initiation is:

G = K2
III(1 + ν)
E

G̃max (ν) . (2.32)

By equating G to the material’s fracture toughness gc, we find the critical load:
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Kcr
III =

√
Egmat

Ĝmax (ν) (1 + ν)
. (2.33)

Substituting this critical load into eq. (2.31) yields the surface area where the stress
criterion for initiation is satisfied, ∆Scrσ , and where σθ ≥ σc. Using the position of ∆S̃max,
we can calculate the characteristic facet distance:

Λ =
√

∆Scrσ
∆S̃max(ν)

. (2.34)

This establishes a correlation where E, gmat, σc, and ν are the key variables. From this,
lmat (as in eq. 2.6) can be extracted, yielding the following relation for pure antiplane shear:

Λ
lmat

= 1

(1 + ν)G̃max(ν)f2
√

∆S̃max(ν)
. (2.35)

Here, G̃max and ∆S̃max are dimensionless constants influenced by Poisson’s ratio, and f
links the loading and σc to the newly opened surface (see eq. 2.31). These findings suggest
that the characteristic facet initiation distance is tied to the material’s intrinsic length and
influenced by Poisson’s ratio.

Phase-field. In the phase-field model, we simulated a planar crack inside a cylinder
with large enough dimensions to approximate an infinite medium. Pure mode III displace-
ment boundary conditions were applied to the cylinder’s mantle, with periodicity enforced
in the out-of-plane direction.

The problem was solved using a staggered approach, with load steps controlled by an
elastic energy increment scheme. A parametric study was conducted to examine the effect
of load step size on crack pattern convergence. Eight-node hexahedral elements were used,
with element size matching a critical length scale. Although the critical load was affected
by mesh coarseness, the crack pattern remained consistent.

As noted by [Pham & Ravi-Chandar 2017], facet initiation under antiplane shear does
not occur without a perturbation in the model. To resolve this, we introduced a 3D Gaus-
sian random field [Lang & Potthoff 2011, Dietrich & Newsam 1997] to spatially alter the
material’s critical fracture toughness (gc).

Fig. 2.3f shows the damage isosurface for d = 0.8 at the start of propagation. Initially,
a homogeneous damage zone appeared around the crack tip, exhibiting self-similarity in
the z direction. As the load increased, daughter cracks began to form at a characteristic
distance. These cracks extended in a fin-like shape, curving back and reconnecting with
the main crack front, forming a recurring pattern similar to [Leblond et al. 2011].

Our results showed that the initiation distance between neighboring facets is propor-
tional to the phase-field regularization length scale and a function of Poisson’s ratio. Com-
paring the two methods yielded initiation distances consistent with experimental measure-
ments from [Knauss 1970].

The numerical experiments presented here are novel in that they showcase facet initia-
tion in a nearly pristine sample, without any significant defects or perturbations influencing
the crack pattern. This suggests that the crack pattern is physically significant, and its sta-
tistical properties are independent of the perturbations used. The existence of facets implies
the need for regularization because, for a vanishing lc, the facet distance also reduces to
zero. Thus, the experimental presence of facets suggests the existence of a regularization
length scale.
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Figure 2.4: (a) Summarized correlations between the tensile strength (σc) and the internal
length scale (lc). The blue shade represents the accessible space based on the homogeneous
solution. (b) Correlation between lc and the initiation lengths and characteristic distances.

2.4.4 Connection between the methods
The correlations obtained from all three cases are summarized in Fig. 2.4. Generally, the
correlation is clear: with a lower lc, the strength (σc) increases. However, this relationship
cannot be described by a single master curve; instead, it should be interpreted as a failure
surface. Based on the envelope shown in Fig. 2.2, it varies within the range depicted by the
blue shade in Fig. 2.4.

While distance does not explicitly appear as a material parameter in the coupled crite-
rion, the initiation length is crucial in determining where both criteria are simultaneously
satisfied. To calculate ∆ac for each lc value, the following procedure was used: (i) first, the
correlation between lc and σc was established, as shown in Fig. 2.4a; (ii) then, the identified
σc was used in the coupled criterion to compute ∆ac. Generalizing this relationship, the
correlation between lc and ∆ac is plotted in Fig. 2.4b. The black solid and dashed lines
show the correlation for tensile opening mode based on the homogeneous solution, while
the hollow and solid circles represent the actual phase-field simulations.

Similarly to mode I, results for both in-plane and antiplane shear are depicted using
red triangles and green diamonds, respectively. Remarkably, all correlations are perfectly
linear. Although geometry affects the quantitative values, we hypothesize that the actual
initiation length (and thus the assumed process zone size and shape) is geometry-dependent.
This implies that lc serves as an intermediate quantity between Irwin’s intrinsic length and
the actual process zone size. While lc accounts for the local stress state, it cannot fully
capture the influence of macroscopic geometry.

2.5 Dynamic fracture
Previously, it was shown that without a regularization technique, multiple physical phe-
nomena cannot be modeled in fracture. Interestingly, this is also true for dynamic fracture.
When a crack is subjected to a stress wave large enough to initiate the crack, it typically
accelerates and branches at a specific maximal velocity. It was long theorized that this
limiting velocity is the Rayleigh wave speed (cR) [Freund & Freud 1998]. Indeed, without
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regularization, in an elastic, linear material, the energy release rate reduces to zero when
the crack propagates at cR [Doitrand et al. 2022]. However, experimental observations,
such as in tempered glass [Molnár et al. 2016a], show that the critical propagation speed
is much lower, approximately 50-60% of cR. Interestingly, the phase-field technique repro-
duces this observation without additional adjustments, and independently of the choice of
gc or lc [Molnár 2024].

In particular, a study reported [Bleyer et al. 2017] that the limiting velocity for mate-
rials such as PMMA is around 0.68cR under certain loading conditions. Before reaching
this velocity, the crack experiences a velocity-toughening mechanism, where the apparent
fracture energy increases significantly as the crack velocity rises. This increase in fracture
energy is associated with instabilities, including microbranching, which leads to surface
roughening [Bleyer & Molinari 2017]. These instabilities ultimately act as a barrier, pre-
venting the crack from reaching the Rayleigh wave speed. The findings underscore that
the crack velocity is not solely determined by material properties but also by the specific
loading and boundary conditions.

To model dynamic crack propagation, we added [Molnár et al. 2020b] the kinetic energy
of the solid into the in eq. (2.7):

L = D (u̇)−Ψ (u, d) , (2.36)

where D (u̇) is the kinetic energy:

D (u̇) = 1
2

∫
Ω

u̇T u̇ρdΩ. (2.37)

In eq. (2.37), u̇ represents the nodal velocities, while ρ is the mass density. For
these dynamic cases, we used the implicit Hilber–Hughes–Taylor (HHT) time integration
scheme [Hilber et al. 1977, Molnár et al. 2020b, Molnár et al. 2022].

To demonstrate the efficiency of the implemented technique, a Kalthoff and Winkler-
inspired [Kalthoff & Winkler 1988] geometry was used. The original geometry was modified
by halving the sample’s height and impacting the sample on the entire upper domain. The
specimen’s geometry is depicted in Fig. 2.5a. For the elastic phase-field calculation, the
material properties of polymethyl methacrylate (PMMA, an amorphous, brittle polymer)
were set to E = 5.5 GPa, ν = 0.3, ρ = 1180 kg/m3, lc = 0.4 mm, and gc = 600 J/m2 in
an AT1 model. The impactor’s velocity was set according to DIC measurements. Further
simulation details were the same as in our recent work [Molnár et al. 2022].

The experimental results presented in this document were recorded by Rian Seghir and
Julien Réthoré at École Centrale de Nantes (unpublished results) using a rotating mirror
high-speed camera.

Fig. 2.5a also shows the crack path (with d > 0.95) in the undeformed configuration.
It can be seen that the simulation results match almost perfectly with the experimental
measurements, not only in the initiation angle but also in the position of the branching.
We recently reported similar results for the full Kalthoff experiment [Molnár et al. 2022],
but without the experimental velocity profile, which is now available and shown in Fig. 2.5b
next to the curve obtained from simulations. The correspondence is very good, and both
initiation, propagation, and branching are well captured using a simple elastic phase-field
calculation.

The ability of the phase-field model to capture the maximum crack propagation velocity
was recently attributed to the fact that the elastic stiffness of the material is degraded in
the process zone around the crack tip. As a result, the Rayleigh wave speed in the localized
zone is lower than in the undamaged material. Ji et al. [Ji et al. 2022] demonstrated, by
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Figure 2.5: Dynamic fracture on demi-Kalthoff sample. (a) Geometry and crack paths. (b)
Crack velocity as a function of time.

using different energy degradation functions and process zone shapes, that the maximum
crack velocity correlates well with the average stiffness of the process zone in front of the
propagating crack.

In reality, PMMA is a viscoelastic material with a static Young’s modulus of 3 GPa,
which increases to 5.5-6 GPa at high strain rates [Seghir & Pierron 2018]. Thus, if the
static modulus is used, the crack velocity exceeds the linear elastic limit posed by cR. A
similar phenomenon was observed in polyurethane experiments [Corre et al. 2021]. There-
fore, to study dynamic crack propagation in viscoelastic materials, we added a viscoelastic
contribution to the potential energy in eq. (2.36):

Ψ (u, d) = Ψel (u, d) + Ψd (d) +
∫
Ω

t∫
−∞

σv (ε̇v, d) : ε̇vdτdV , (2.38)

where σv and ε̇v are the viscous stress and strain rate tensors, respectively. The stress
components are obtained as σv = g (d)ηε̇v, with η containing the stiffness components
associated with viscous deformations. For further discussion on the material model and
phase-field implementation, we refer to references [Luo et al. 2020, Eid et al. 2023].

With the viscoelastic formulation, using a static stiffness of E = 3 GPa and η =
0.055 MPa·s for both hydrostatic and deviatoric viscoelastic coefficients, the limiting veloc-
ity was accurately recovered, as shown in Fig. 2.5b. The parameters were identified using
a Finite Element Model Update scheme on the elastic wave propagation until t = 40 µs.

Furthermore, we found, similarly to Ji et al. [Ji et al. 2022], that the average tangent
modulus in the process zone (the lc-sized zone around the crack tip) increases at high crack
opening rates. This allows the elastic wave, and thus the crack, to propagate faster and
branch at a higher velocity [Eid et al. 2023].

2.6 Oxidation induced fracture
One of the main advantages of the phase-field technique is its versatility in modeling various
physical phenomena. If the energy of a problem can be formulated, and the coupling
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between different physics can be established, the variational framework inherently handles
the numerical solution.

Interestingly, the phase-field method was not originally developed to model fracture but
to describe diffuse interfaces [Cahn & Hilliard 1958]. In this chapter, we demonstrate how
we used this method to study crack initiation in zirconium alloys under oxygen diffusion and
subsequent phase change (oxidation) in nuclear fuel cladding. This study was motivated by
the potential loss-of-coolant accident, which can occur at high temperatures and pressures.
In this hypothetical accident scenario in pressurized water reactors, the water evaporates,
exposing the cladding to large amounts of oxygen. The only solution to avoid catastrophe
is to insert graphite rods to halt the nuclear reaction. However, due to the high internal
pressures in the fuel chamber, the cladding deforms in a ductile manner and bloats, leaving
no space for the moderators to penetrate the system. Finally, the oxidized outer layer of the
cladding becomes brittle and fractures, exposing the environment to dangerous radiation.
Thus, in the work of Ethel Djeumen [Djeumen 2022, Djeumen et al. 2022], a multi-physics
platform was developed to study the elementary mechanisms behind the brittle-ductile
transition in zirconium alloys.

The energy functional in eq. (2.7) was enriched by including the energy contribution of
the coupled diffusion and phase transformation problem:

L = Wext (u, d)−Ψel (u, d, ϑ) + Ψch (c, ϑ) , (2.39)

where Ψch (c, ϑ) represents the chemical energy, with c and ϑ being two new degrees of free-
dom: the oxygen concentration and the order parameter. The order parameter represents
whether the material is in a metallic or oxidized phase. The chemical contribution can be
further divided into chemical free energy [Kim et al. 1998] and interface energy contribu-
tions:

Ψch (ϑ,∇ϑ) =
∫
Ω

[
Hgch (ϑ) + α

2 |∇ϑ|
2
]
dΩ. (2.40)

The structure is similar to the phase-field fracture formulation. Here, H represents the
height of the energy barrier, accounting for the free energy penalty of the interface, and α is
the coefficient of the gradient term related to the interface energy. The geometric function
gch is a double-well potential [Raabe et al. 2004], analogous to ω(d) in eq. (2.11).

The interface energy and interface thickness can be deduced from H and
α [Kim et al. 1998, K. Ammar & Forest 2009] as:

gϑ =
√
αH

3
√

2 ,

lϑ = ln
(

1−ζ
ζ

)√
2α
H ,

(2.41)

assuming the interface region ranges from ϑ = 1 to ϑ = 1 − ζ, where ζ = 0.05 was chosen
for this study.

Furthermore, the potential energy in eq. (2.39) was modified to account for changes
in material properties due to phase transformation. Both elastic and fracture properties
were altered using a third-order homogenization function [Wang et al. 1993]. Addition-
ally, viscoplastic energy dissipation was included to account for creep effects based on
Norton’s law. The coupling between the different physics was established based on both
literature and in-house experiments conducted during the thesis. Using this newly imple-
mented method, we successfully described the brittle-ductile transition observed in exper-
iments [Leistikow & Schanz 1987]. An example is depicted in Fig. 2.6a. The model repre-
sents a slice of the cladding cylinder perpendicular to its main axis, with periodic boundary
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Figure 2.6: (a) Fracture in zirconium alloy fuel cladding. The top image shows experimental
observations, while the bottom shows the coupled multi-physics phase-field simulations. The
colors represent oxygen concentration at the fractured state. (b) Fracture in solid oxide fuel
cells due to volume expansion during oxidation.

conditions applied in both normal and tangential directions. The oxide layer propagates
from the top, while the internal pressure (applied at the bottom) gradually opens the crack
due to creep relaxation in the metal. As the metal oxidizes and becomes brittle, the crack
advances. This model provides professionals in the nuclear industry with a unique tool to
understand the limitations of their designs and the extent of potential damage under given
pressure and oxidation conditions.

This technique is currently being developed to model fracture in solid oxide fuel cells
(SOFCs) [Rorato et al. 2023], as shown in Fig. 2.6b. SOFCs are composed of a complex
structure of zirconium alloy, nickel, and pores. Repeated charging and discharging of the
battery causes oxygen to enter the pores, and nickel atoms diffuse to the surface, forming
nickel oxide. This oxidized nickel has a significantly larger macroscopic volume than the
metal, exerting substantial deformation on the relatively fragile zirconium, which results in
the fracture of the battery structure. This behavior is demonstrated in Fig. 2.6b, where
the red areas indicate the fractured regions. The multi-physics platform developed here is
relatively easy to calibrate and can be applied to various problems, offering great scientific
and industrial potential.

2.7 Concluding remarks
This chapter has explored the critical role of length scales in fracture mechanics, with a
particular focus on the interplay between material properties, crack initiation, and propaga-
tion. By revisiting Irwin’s length in finite fracture mechanics and applying it alongside the
phase-field regularization approach, we have demonstrated that the introduction of internal
length scales is essential for accurately capturing material failure mechanisms.

The phase-field method’s ability to seamlessly bridge the gap between stress-based and
toughness-based criteria provides a unified framework for understanding fracture across
multiple loading modes. Through a detailed comparison with the coupled criterion, we
revealed important correlations between the length scale parameter, lc, tensile strength,
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and crack propagation behavior in both stable and unstable initiation scenarios.
In particular, the chapter offered insights into fracture modes under various conditions,

including tensile opening, in-plane shear, and antiplane shear. The introduction of a regular-
ization length scale not only avoids the singularities present in classical fracture mechanics
but also successfully models complex phenomena such as echelon cracking under antiplane
shear and the size effect in tensile loading.

Moreover, the dynamic fracture analysis demonstrated that without regularization, phe-
nomena like crack kinetics and branching are difficult to predict. The phase-field method,
however, captured dynamic crack propagation with impressive correspondence to experi-
mental observations. Its inherent regularization was also shown to be a powerful tool in
modeling oxidation-induced fractures, where complex interactions between multiple physi-
cal phenomena drive failure.

In conclusion, this chapter has reaffirmed the importance of understanding length scales
in fracture mechanics. The phase-field framework, with its flexibility and broad applica-
bility, emerges as a promising approach for capturing the complex behavior of materials
under fracture, effectively bridging the gap between theoretical predictions and real-world
observations.



Chapter 3

Strength and Toughness of
Silicate Glasses

The chapter explores the relationship between length scales and mechanical properties in
silicate glasses, with a focus on their strength and toughness. Focusing on amorphous sil-
icates, it highlights how compositional variations, such as sodium content, and external
factors like pressure, impact elasticity, plasticity, shear banding, and fracture behavior.
Through the integration of atomic-scale simulations and continuum modeling, the chapter
explores the internal length scales that dictate mechanical responses, offering deeper in-
sights into crack initiation and propagation. Additionally, it emphasizes how regularization
methods, such as phase-field modeling, enhance the ability to capture complex phenomena
like shear banding and crack propagation in brittle materials.
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3.1 Motivation
Silicate glasses are widely used in technical applications, particularly where both stiffness
and transparency are essential. While these materials are macroscopically brittle, they
display ductile behavior at the micron scale [Marsh & Cottrell 1964], a key factor in under-
standing the origins of brittleness in glasses. However, the plastic response of amorphous
silicates presents some unusual characteristics. For example, open-structure glasses like
amorphous silica exhibit irreversible volumetric strain when compressed, with densification
reaching a saturation point of around 20% under hydrostatic pressures of approximately 20
GPa [Mackenzie 1963, Vandembroucq et al. 2008, Deschamps et al. 2013, Rouxel 2015].

In technical glasses, additives like sodium oxide (Na2O) are commonly introduced
into silica to modify the glass network, lowering the glass transition temperature and
facilitating easier processing. However, the addition of sodium also affects the me-
chanical ductility. Sodium-rich soda-lime-silicate glasses show reduced densification un-
der hydrostatic compression [Ji et al. 2006], with densification occurring at lower pres-
sures [Deschamps et al. 2011]. This behavior is due to sodium ions occupying the open
network structure, leading to what is often described as "normal glass" behavior, in contrast
to the "anomalous" behavior of pure silica glasses, which exhibit unique thermal contraction
and plastic densification at small scales.

Simulations play a crucial role in this research, providing detailed insights into the
mechanical responses of these glasses and enabling atomic-level analysis of their rearrange-
ment mechanisms. This chapter delves into various aspects of the static behavior of silicate
glasses, emphasizing how different length scales influence the transition from atomic struc-
tures to continuum material properties.

3.2 Elasticity
Atomic-scale simulations, particularly molecular dynamics (MD), model atoms as concen-
trated masses, with their interactions represented by non-linear springs governed by em-
pirical potential functions. These functions define the energy state of interactions, and the
atomic positions evolve either through explicit time integration (in MD) or energy mini-
mization (in molecular statics) to find equilibrium configurations.

In this study, amorphous silicate glass samples with the composition xNa2O − (100 −
x)SiO2 were prepared by randomly placing atoms within a periodic simulation box. MD
simulations were then performed using the LAMMPS software [Plimpton 1995] to equi-
librate, quench, and test the samples. Among the various potential functions available
for sodium silicate glasses [Tsuneyuki et al. 1989, van Beest et al. 1990, Pedone et al. 2006,
Pedone et al. 2007], we employed the widely studied van Beest, Kramer, and van Santen
(BKS) potential [van Beest et al. 1990], following the parameterization by Yuan and Cor-
mack [Yuan & Cormack 2001]. A cutoff function was added to the Buckingham potential
to ensure smooth energy and force transitions at the cutoff distance. A short-range re-
pulsive potential was incorporated to prevent atomic collapse at high pressures or tem-
peratures, which is a common issue with the traditional BKS potential. Coulomb in-
teractions were computed using partial charges, with long-range forces managed by the
PPPM solver [Hockney & Eastwood 2021] for periodic systems and the Wolf truncation
method [Wolf et al. 1999] for non-periodic cases. The methodology for sample generation
and the potential function are detailed in appendix A.2 and in Ref. [Molnár et al. 2016d].

The structural accuracy of the samples was verified using experimental data from
neutron scattering studies [Zotov & Keppler 1998, Karlsson et al. 2005, Fábián et al. 2007,
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Cormier et al. 2011] and local connectivity analyses, such as NMR [Emerson et al. 1989,
Maekawa et al. 1991, Charpentier et al. 2004, Naji et al. 2015].

Elastic calculations were then conducted by applying small progressive homogeneous
deformation steps (δε = 10−4) to the simulation box, followed by energy minimization
using the Polak-Ribiere conjugate gradient algorithm to reach static equilibrium. The
static approach was chosen over statistical methods [Parrinello & Rahman 1982] due to
the absence of thermodynamic equilibrium in the glassy state. In this regime, the system
transitions between metastable states driven by mechanical rather than thermal forces.

The global stiffness tensor was calculated, alongside local stiffness properties at different
coarse-graining scales to identify where the material transitions from anisotropic to isotropic
behavior. Six distinct quasi-static deformations (compressions and shears) were applied to
extract the 21 independent elastic moduli [Holzapfel 2001], characterizing the macroscopic
mechanical response. The stress-strain relationships revealed minor fluctuations indica-
tive of local microplastic events [Spaepen 1977, Argon 1979, Lemaître & Chaboche 2004,
Tanguy et al. 2006, Karmakar et al. 2010, Mantisi et al. 2012], with macroscopic stress was
computed by summing the per-atom virial stress [Thompson et al. 2009] and dividing this
sum by the box volume.

The stiffness components were determined by performing linear regression over small
strain increments, by solving the following overdetermined equation system:

c = Arg min
c

(‖Mc− s‖) . (3.1)

relating the tangent moduli to the stresses. The coefficient matrix (M, size: 36×21) contains
the applied strain values. The stiffness components are the unknowns (c, size: 21× 1), and
the stress values are the constant terms (s, size: 36 × 1). Knowing that the equations are
not fully independent, there are always 15 equations that are linear combinations of the
others. The relative error (∆) is determined by substituting the stiffness components into
the original equation system and calculating the stress difference between atomic scale and
continuum results.

Local elastic properties were computed using a coarse-graining method [Hardy 1982,
Goldhirsch & Goldenberg 2002, Goldenberg et al. 2007] depicted in Fig. 3.1a. This method
offers the advantage of conserving both mass and energy during homogenization. This
method allowed for the calculation of local stress, strain, and elastic moduli at different
coarse-graining scales. The Gaussian convolution function used for coarse-graining is given
by:

φCG(r) = 1
w3π3/2 e

− r2
w2 , (3.2)

where r is the distance from the observation point to the atom, and w is the coarse-graining
width. As shown in Fig. 3.1b, the relative error decreases with increasing coarse-graining
width, stabilizing below 3% at w = 8 Å, which we define as the smallest length scale where
the material can be considered a continuum.

An example of the local shear modulus distribution for x = 30% Na2O is shown in
Fig. 3.1c, highlighting significant local variations in the amorphous structure despite the
macroscopic value of µM = 24 GPa.

3.3 Densification
Amorphous silica is known to densify significantly under high pressures even at room
temperature [Rouxel et al. 2010, Deschamps et al. 2013]. Pressure-induced densification of
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Figure 3.1: (a) Schematic illustration of the coarse-graining method. (b) Relative local
error as a function of the coarse-graining scale used. (c) Local shear modulus for x = 30%
Na2O.

amorphous silica is a process that significantly increases the material’s density through
the application of high external pressure. Under pressures typically in the range of sev-
eral gigapascals, the atoms within the disordered silica structure rearrange to reduce free
volume, leading to a more compact and dense material. This rearrangement may involve
changes in the coordination number of silicon atoms, from the usual four-fold to six-fold
coordination, resulting in a tighter atomic packing [Prescher et al. 2017]. For example in
DAC experiments, it was shown that, the density of amorphous silica can increase from
around 2.2 g/cm3 to 2.6 g/cm3. Furthermore, a nonlinear change in mechanical properties
was observed like increased elastic modulus or Poisson’s ratio upon ≈ 20% densification
[Deschamps et al. 2014].

To test the hydrostatic behavior of the atomic scale models, simple hydrostatic loading
experiments were carried. The permanent volume variations were calculated by compressing
the samples isotropically until the desired pressure value was reached, then the deformation
was reversed in order to relax the pressure. The difference between the initial and the
relaxed volume was compared to compute the permanent volume variation, εplV .

The response was divided into three separate stages. In a first stage, at low pressure, the
response was quasi-elastic and the volume change was relatively small. In a second stage,
densification was roughly linear with pressure although the details were affected by sodium
content. More sodium tends to reduce the densification threshold: x = 5% Na2O begins to
densify at p0 = 3 GPa while x = 30% has almost no elastic resistance and plasticity starts at
a very early stage (p0 = 0.5 GPa). In a third stage, the linear regime gradually bends over
and saturates to a maximum value (εpl,max

V ). The maximum permanent volumetric strain
decreases with sodium content. More precisely the yield pressure as a function of permanent
volume change can be described using the following sigmoidal curve [Keryvin et al. 2014]:

py,+
(
εplV

)
=


[
− ln

(
1− εpl

V

εpl,max
V

)
1
m1

]1/m2

· (pm − p0) + p0 if →εplV > εpl,max
V

∞ otherwise,
(3.3)

where p0 is the initial yield pressure and pm, m1 and m2 are material parameters.
Qualitatively, the evolution of the plastic properties with increasing sodium content

(reduction of the yield threshold and of the permanent volumetric strain at saturation) is in
good correspondence to experimental results. Note however that the permanent volumetric
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strain at saturation is significantly larger than expected. The maximum volume loss for
x = 30% Na2O is found at -16%. However, experiments measured a much lower value
for window glass around -6% [Ji et al. 2006, Deschamps et al. 2011]. This discrepancy was
probably due to over-minimization in the atomic structure. Nevertheless, as usual with
atomistic simulations our aim was not to predict material properties quantitatively, but to
observe the atomistic mechanisms and the nature of the mechanical response. Then, the
exact values of the response parameters were determined using real life experiments.

3.4 Ductile behavior
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Figure 3.2: Results presented on pure amorphous silica (x = 0% Na2O). (a) Shear stress
as a function of the applied shear strain for different pressure states for pure silica. The
green curve demonstrates the effect of densification. The figure shows the brittle failure
at p = −7 GPa and the plastic response for the other cases. (b) Maximum yield stress as
a function of the hydrostatic stress state and densification for pure silica. (c) Comparison
between finite element simulations and experimental measurements (micro pillar compres-
sion [Kermouche et al. 2016]; micro-sphere compression [Romeis et al. 2015]; indentation
[Field et al. 2003]).

Plasticity in silicate glasses represents a fascinating paradox in materials science, where
a material traditionally regarded as brittle at the macroscopic scale, exhibits ductile be-
havior at the microscopic level [Taylor 1949, Marsh & Cottrell 1964, Romeis et al. 2015,
Kermouche et al. 2016]. This apparent contradiction has sparked significant interest as sil-
icate glasses are known for their glassy, non-crystalline structure while lacking the typical
dislocation mechanisms enabling ductility in metals.

In this chapter we will discuss the basic building blocks of ductile behavior in silicate
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glasses. Starting with the way we identified the ductile response, how we distinguished
it from brittle fracture. Then presenting a novel way to develop yield criteria based on
atomic scale results. Analyzing finally the way, how plasticity evolves from the elementary
atomistic rearrangements to form a shear band.

Quasi-static shear deformations were conducted at different constant pressure states.
The samples were first pre-pressurized then the simulation box was tilted iteratively to
apply shear. During the shear deformation all three axial stresses were kept constant by
modifying the size of the simulation box iteratively. In this first demonstration the results
are presented on smaller a cubic 100 Å sample, which was however large enough to minimize
finite size effects, but not large enough to produce a shear band.

In Fig. 3.2a macroscopic Cauchy shear stress is shown as a function of the applied
shear strain. All strain measurements in this section are logarithmic Hencky strains. Three
different failure modes were distinguished:

• Brittle: At high tensile stress (e.g., p = −7 GPa), after a maximum shear stress
the material looses completely its load-bearing capacity and both shear stress and
pressure reduces to zero. This failure mode is characterized by macroscopic crack
formation.

• Ductile: For higher pressure values, the applied shear strain can be increased without
the disintegration of the sample. In this case after either a softening stage (for low
pressures) or a monotonic increment (for higher loads), the shear stress enters and
maintains a plastic plateau. This way the tangent stiffness reduces to zero, but the
pressure and shear stress state is maintained to a non-zero value.

• Softening: For intermediate pressure values (e.g., p = 2 GPa), after a local stress
maximum, the material starts to loose its resistance and enters a non-zero plateau.
Interestingly plastic deformation in silica comes with densification thus the material
rather than losing its elastic stiffness (associated with damage) becomes more rigid.

Interestingly plastic deformation in silica was associated with densification. In other
words, to maintain constant pressure, thus reform the atomic bonds, the sample had to be
shrank and the free volume reduced. This phenomenon was shown to create a slightly differ-
ent atomic structure than hydrostatic densification favoring smaller, 3 member rings. This
phenomenon was eventually demonstrated experimentally as well [Martinet et al. 2020].

Interestingly, when the sample was densified to its maximum capacity before shear, the
softening effect disappeared, although the plateau value remained unchanged, as shown in
Fig. 3.2a with green. This was the first sign that density could play a significant role in the
failure mechanisms of silicate glasses.

After having identified the elementary shear response, we were able to move forward
and develop a yield criterion to describe the homogeneous response of the material.

3.4.1 Yield criterion
In a pioneering work, Schuh and Lund [Schuh & Lund 2003] derived a constitutive re-
lation from atomistic simulations for metallic glasses. Their numerically calculated
yield surface compared favorably with experimental results. Since then, many works
have been dedicated to measure plasticity in metallic glasses [Schuh & Lund 2003,
Lund & Schuh 2003, Lund & Schuh 2004, Lund & Schuh 2005, Shimizu et al. 2006], nano-
crystalline metals [van Swygenhoven et al. 1999, Lund et al. 2004] and glassy poly-
mers [Mott et al. 1993, Rottler & Robbins 2001]. Amorphous solids in general were stud-
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ied [Falk & Maloney 2010, Rodney et al. 2011, Xu et al. 2014], though an elaborate quan-
titative description of silicate glasses was still missing.

In the previous sections, we found a strong correlation between densification and yield
strength. Therefore, to investigate the pressure and densification dependence of the yield
strength, several tests were carried out under combined hydrostatic and deviatoric load-
ing. To evaluate the constitutive relations, permanent plastic strains were calculated as
a function of the maximum stress state in various loading/unloading cycles. In practice,
the yield stress is often written as a function of plastic strains. Here, by the inverse pro-
cess, we register plastic strains as a function of applied stresses to determine the hardening
functions.

The following protocol was executed to calculate the permanent volume variations (εplV )
at a given stress state after loading and unloading. In a first step, the simulation box was
deformed hydrostatically (σ1 = σ2 = σ3) to obtain the desired pressure value. Then the
sides of the box were elongated or compressed separately to apply deviatoric stress at con-
stant pressure and constant meridian angle (step 2) to reach the target load point. During
step 3 the direction of the deformation was reversed to reduce the applied deviatoric stress
to zero, maintaining the principal stress relations as in step 2. Finally in step 4 the pressure
was relaxed to zero. The final box shape was compared to the original one to calculate the
permanent volumetric strain as a function of applied stresses. The experiment was carried
out for various stress states to map the plastic response of the material accurately.

The envelope in Fig. 3.2b shows the maximum equivalent shear stress (square root
of the second invariant of the deviatoric stress tensor) as a function of hydrostatic stress
(or negative pressure: ρσ = −p) in the pure shear meridian for pure silica. It can be
seen that the maximum values describe a concave failure surface, which appears to violate
Drucker’s postulate [Drucker 1959] and leads to instability. These observations suggest that
the material actually evolves during plastic deformation and that parametrization by some
internal variable is necessary.

From the elementary results it is clear that densification lowers the deviatoric strength.
To clarify the situation, we have first pre-densified samples using hydrostatic pressure, then
performed the same density mapping procedure through combined pressure-shear loading.
in Fig. 3.2b with dashed lines, the maximum deviatoric stress is shown as a function of
densification. The figure illustrates the transformation of the initial yield surface into
the final one: as permanent densification increases, the positive yield pressure increases,
the deviatoric yield strength decreases and the yield curve flattens. Most importantly,
Fig. 3.2b shows that once the dependence upon density has been explicitly taken into
account, the yield surfaces for each given density are convex so that Drucker’s postulate is
indeed satisfied [Drucker 1959].

The numerical results obtained at the atomic scale were then fitted with an analytical
surface and this function was then implemented in a finite element code to be able to
compare the atomic scale form to experimental scale results [Molnár et al. 2017b]. Based
on this evolution, we have proposed a generic shape for the yield surface:

p
py,− +

(
q
qc

)b
− 1 = 0 if p ≤ pint(

p−ph
pf

)2
+
(
q
qe

)2
− 1 = 0 if pint < p

(3.4)

where q is the von Mises shear stress. In this yield surface, the tensile side of the dome
is modeled by an extended Drucker-Prager model. This power law function is closed by
an elliptic cap on the compression side. Under the assumption of associated plasticity,
densification sets in under pure hydrostatic compression. This model will be subsequently
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referred to as DP-cap. The parameters for the DP-cap model are as follows: py,− sets the
tensile strength and b the power law exponent of the extended Drucker-Prager function: for
b = 1 we find the standard linear Drucker-Prager model while curvature increases with b.
Parameter qc sets the cohesion. The three parameters of the elliptic cap qe, pf and ph are
set by the compressive strength py,+ and the requirement that the two component functions
meet smoothly at some pressure pint.

For simplicity, we have chosen to work with an associated rule. Thus equa-
tion (3.4) will be considered both as yield function and flow potential. This is com-
mon practice for microscopic yield criteria [Lambropoulos et al. 1996, Schuh & Lund 2003,
Kermouche et al. 2008, Keryvin et al. 2014].

In practice, to model a given amorphous silicate, the material parameters had to be
determined. This quantitative evaluation of the numerical parameters – i.e., the calibration
of the model – can be performed by comparison between numerical trials and experimental
results. To that end, we need quantitative measurements for as many different types of
loading cases as possible. However, as stated before, one of the major constraints is the
necessity to carry out these measurements at the micron-scale.

This calibration is necessary not only because of the limitations of the potentials used
in the atomic scale simulations but also because the calculations are done without thermal
activation. Because the experiments are conducted well below the glass transition temper-
ature, it may be assumed that the form of the yield function is unchanged, although the
yield strength could actually be lower due to more active plastic zones.

Without entering into details, the densification law, controlling py,+ was set by eq. (3.3),
and for the new parameters, c and b we used Berkovich indentation and micro-sphere
compression, which showed to cover different parts of the stress space. The determination
of py,− is a bit more difficult to carry out since in this regime there is almost no data
available at all. We therefore assume a reasonable value of -5 GPa. This choice turns out
to be consistent with the (very scattered) data available [Luo et al. 2016]. However, at
this stage we have concentrate on the compressive side, as a yield criterion is by definition
unable to model brittle failure.

The force-displacement results for the experiments used for calibration and verifica-
tion are displayed in Fig. 3.2c. It is clearly visible that the correspondence is very good,
independent of the geometry. However, we have also emphasized that, due to the increas-
ing complexity of the constitutive models, the simpler data from load-displacement curves
under various relevant loading cases must be complemented by a richer data sets, such as
strain distribution measurements. Our work also pointed out that experiments in the tensile
regime, which are very challenging, would be particularly valuable at this stage. Moreover,
even for silicate glasses (i.e., with modifiers), the scarcity of micromechanics experiments
significantly limits the accuracy of possible descriptions. Finally, several interesting issues
have not been addressed in this model. For instance, softening and the formation of shear
bands would have warranted specific developments as well.

3.4.2 Plastic events
In the seventies, Spaepen [Spaepen 1977] and Argon [Argon 1979] have proposed a
description of the elementary processes responsible for plasticity in metallic glasses.
The description proposed by Spaepen was based on the existence of randomly dis-
tributed soft zones, or free volumes, while the description of Argon described low
temperature plasticity as a succession of shear dominated dislocation loops identified
as shear transformation zones (STZ). Recently, it was shown that the plastic de-
formation of amorphous systems can be described as a succession of Eshelby inclu-
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Figure 3.3: Statistics on plastic events in x = 5% Na2O content silicates: (a) average size of
the PE’s core; (b) average amplitude between 10 deformation steps; (c) average cumulated
strain in the core of the PE versus the macroscopically measured remaining shear strain.

sions [Eshelby 1957] containing both deviatoric (shear dominated) and compressive (densifi-
cation) components [Maloney & Lemaître 2004, Tanguy et al. 2006, Dasgupta et al. 2012,
Puosi et al. 2014, Nicolas et al. 2015, Albaret et al. 2016].

To identify the plastic activity [Molnár et al. 2017a], the non-affine displacement field is
used [Tanguy et al. 2002, Weaire & Kermode 1984]. This quantity was shown to highlight
the plastic centers that are located precisely at its local maxima as soon as irreversible
displacement occurs [Tanguy et al. 2006, Goldenberg et al. 2007, Tsamados et al. 2009,
Fusco et al. 2014]. The non-affine displacement field duna is obtained between two de-
formation states by subtracting the displacements of the atoms in the affine hypothesis to
the real displacements obtained after mechanical equilibrium is reached. It is written:

duna = du− dεM · r0, (3.5)

where du is the atomic displacement obtained from simulations, that compares the atomic
positions after energy relaxation to the atomic positions before the external deformation is
applied, and dεM ·r0 is the so-called affine part where r0 corresponds to the initial position
of the atom and dεM is the macroscopic strain step tensor between the deformation states.
The non-affine displacement field thus evaluates the atomic displacements occurring during
energy minimization. It also corresponds to the deviation from the homogeneous strain
field.

To accurately measure the displacements, duna was calculated between every 10 load
steps (e.g., between the initial and the configuration obtained after 10 load steps, then
between the 10th and 20th one, and so on) that is for a strain interval dγMxy = 10·δγM = 0.1%.

The non-affine displacements can be used to identify local plastic events (PEs), which
control the major part of the irreversible rearrangements in amorphous solids [Argon 1979,
Falk & Langer 1998, Tanguy et al. 2006]. The PEs were obtained using the method devel-
oped by Fusco et al. [Fusco et al. 2010]. First duna(x, y, z) was computed between every
10 load steps then the discrete field was homogenized using a coarse-graining width of
w = 3 Å. Then the local maxima of this field are identified as individual PEs. Smaller than
duna < 0.1 Å were neglected because their amplitude is within the numerical precision of
the energy minimization scheme.

The size (rPE) of a PE was estimated by looking at the radial decay of the angular
averaged intensity of the non-affine field around its local maximum. The values were then
fitted with an exponential function: |una| = umax

na exp (− |r|/rPE), where umax
na is the value
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at the peak, |r| the radial distance, and rPE measures the radius of PE’s core.
The results are summarized for different pressure states for x = 5% Na2O in Fig. 3.3.

Three stages are clearly visible: (i) a first stage where almost no PE is found; (ii) a second
stage where the PEs appear exponentially; (iii) a final stationary stage, where the number of
PEs appearing at each strain step is constant, giving rise to a linear strain dependence of the
cumulative number of PEs, or constant nucleation rate. The fist stage can be considered
as elastic (plasticity is negligible); then the material gradually plastifies, and finally the
response enters a stationary plastic plateau.

Fig. 3.3a shows the average radius size (rPE) of the plastic event’s core as a function of
the imposed shear deformation. In all cases, the PE’s radius is smaller in the early stage
but increases gradually and tends to a stationary value in the plastic plateau. Initially, rPE
is clearly pressure dependent. It is enhanced by the pressure. Increasing the pressure from
-2 to 5 GPa enlarges the plastic cores by 50% from 4 Å to 6 Å. In the stationary regime,
the PE core radius is nearly 6.5 Å and it is only slightly enlarged by pressure but does not
depend anymore on composition. After the coarse-graining length, shown in Fig. 3.1b, the
average size of the elementary event gives us a second measure for an elementary scale in
the material. It can be seen that as in elasticity range of 7− 8 Å is the minimal size where
the material can be considered a continuum. Interestingly a similar cross-over length scale,
the Larkin length was found in crystalline materials by Rodney et al. [Rodney et al. 2024].

Fig 3.3b shows the amplitude of the non-affine displacement field at the plastic event
averaged over all the events in the same strain step. The same kind of stages can be found:
after an initially low value, the amplitude increases quasi-linearly and saturates to a station-
ary regime. Pressure has a significant effect on the amplitude too: increasing the pressure
enhances the amplitude in the initial quasi-elastic stage, but the amplitude decreases with
pressure in the final stationary plateau. The general trend is thus an enhancement of plastic
activity with pressure, combined with slightly larger amplitude events in the early stages
of deformation, and then significantly lower amplitude.

Finally, we have showed that plasticity in these simulations are mostly induced by the
localized events. When the total strain, computed as the sum of the local deviatoric strain
measured in the centers of the PEs, compares quite well with the global plastic deformation
measured after unloading the system as shown in Fig 3.3c. We found that the relationship
between the non-affine displacement and local shear strain was linear. The equivalent shear
strain identified by γmk = una

2rPE
corresponded well to the actual strain value measured in the

core of the PE.

3.4.3 Shear bands
In section 3.4, the basics of ductile behavior in silicate glasses were presented. We ob-
served no major collective localization of the plastic events, and the response was well
described using local constitutive models. However, as experimentally demonstrated by
Gross [Gross & Tomozawa 2008], after a certain length scale and for a given composition,
periodic shear bands appear under indentation. This is of course, cannot be modeled using
the yield criterion developed in section 3.4.1.

Therefore, in this section, we present atomic scale results on unidirectionally larger
samples, in which we were able to observe the formation of a shear band. We analyze the
origin and the signature (structural change) of this phenomenon and propose a continuum
description to identify the characteristic length originating from the collective motion of
individual plastic events to form the shear band.

The simulations were carried out on a sample with dimensions Lx × Ly × Lz = 100 ×
600 × 100 Å3, containing approximately 400k atoms. The samples were generated and
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verified as discussed in earlier sections. After quenching, shear deformation was applied in
the xy plane in an athermal manner until γMxy = 0.6, with incremental steps of δγMxy = 10−4.
The deformation was performed under a constant pressure of p = 0 GPa.

The stress response is displayed in Fig. 3.4a. It can be seen that after a quasi-elastic
regime, the material gradually loses its tangent stiffness, and after reaching a maximum
peak, it begins to soften, eventually reaching a plateau. When the deformation is reversed,
and the stress is unloaded and then reloaded, the softening stage disappears, and the
sample perfectly reenters the plateau. This indicates that the structure has been irreversibly
changed, and a memory effect remains.

To establish the energy balance we have calculated the external work density by:

wMext =
∫
t

σM : εMdt, (3.6)

with σM and εM being the macroscopic Cauchy stress and Hencky strain tensors respec-
tively. While t symbolizes a pseudo time.

The strain tensor was decomposed into elastic and plastic parts in the traditional man-
ner:

εM = εMel + εMpl . (3.7)

To calculate the elastic strains, we then used:

εMel = C (t)−1
σM . (3.8)

where C is the elastic stiffness tensor. From this, the elastic energy density can be calculated
as:

ψMel =
∫
t

σM : εMel dt, (3.9)

and its plastic counterpart as:

ψMpl =
∫
t

σM : εMpl dt. (3.10)

Usually in eq. (3.10) σM is replaced by yield stresses. However, we assumed that if εMpl
increases, the stress state should remain on the yield surface. The energy densities are then
displayed in Fig. 3.4b.

After a macroscopic analysis, the local kinetics were calculated using the CG technique.
The cumulative equivalent plastic shear strain (second invariant) is displayed in Fig. 3.4c. It
is clearly visible that plastic deformation localized in a well defined band with an amplitude
significantly larger than the macroscopically applied value. Interestingly, after unloading
we found that with shear deformation, densification (remaining volume change) increased
significantly as well (as shown in Fig. 3.4d). This phenomenon underpins the importance
of densification which comes with remaining change in the structure and shear deformation
as discussed in Ref. [Molnár et al. 2016b].

After unloading, we wanted to determine whether the local strength (the maximum
stress it can bear) also decreased in the band, as previously shown in Lennard-Jones glasses
by Barbot et al. [Barbot et al. 2020]. Therefore, we conducted a similar local calculation
to Patinet et al. [Patinet et al. 2016], but with a modification: we left a finite slice of
material with a thickness of 20 Å in the y direction free, while the remaining material was



46 Chapter 3. Strength and Toughness of Silicate Glasses

(a)
(c)

y 
[Å
]

x [Å]

(b)

γ q,pl
m −⎡⎣ ⎤⎦
2.5

0.5

1.0

1.5

2.0

R

(d)

γ pl
γ el

wM
ext
ψM
el

ψM
pl

〈ψm
el 〉

〈ψm
pl (γmq,pl)〉〈ψm
pl (γmq,pl)〉

〈ψm
pl ( γmq,pl,∇γmq,pl)〉〈ψm
pl ( γmq,pl,∇γmq,pl)〉

En
er

gy
 d

en
sit

y 
- ψ

i [
J/m

m
3 ]

0

1

2

3

Applied shear strain - γMxy  [-]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1000

600

Figure 3.4: Shear band formation in amorpous silica: (a) stress-strain response in load-
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scopic quantities. (c) Cumulative plastic equivalent shear strain at γMxy = 0.6 deformation
state. (d) Mean local quantities along the y axis after unloading (in strain state R in part
a): remaining volume change (densification), shear modulus and maximum shear strength.

deformed in an affine manner. The stress was then calculated from the freely moving slice.
The initial slope and the maximum shear stress are plotted in Fig. 3.4d. It can be seen
that the stiffness actually increased in the shear band region, which is consistent with the
densification, and thus with experimental observations. This highlights that the softening
is not related to damage, but rather to structural change.

Additionally, we found that, indeed, in silicate glasses, the local strength in the shear
band decreased as well. This phenomenon explains why, during reloading, the shear band
appears in exactly the same location at the same stress value. Interestingly, however, it
should be noted that the local strength values were consistently higher than the macro-
scopic strength. This highlights the importance of localization and the need for a non-local
description at the macroscopic scale.

Thus, when calculating the local energy densities, we adopted a similar approach to the
fracture phase-field method and assumed that the average plastic energy density can be
calculated using the following equation:

〈
ψmpl
〉

= 1
V

∫
Ω

∫
t

σm : εmpldt+ l2pq
m|∇γq,pl|2

 dΩ (3.11)

where qm is the von Mises stress, γq,pl is the energy equivalent plastic shear strain and
lp is an intrinsic length scale in shear banding, similar to lc in fracture. In this case, we
identified lp u 13 Å.
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The elastic energy density was recovered from the average of the local values:

〈ψmel 〉 = 1
V

∫
Ω

∫
t

σm : εmeldtdΩ. (3.12)

As shown in Fig. 3.4b, the gradient term was necessary to recover the macroscopic value
of the local plastic energies when the shear band became significant.

It is important to note that the gradient plastic model used in eq. (3.11) tends to
widen [Jirásek & Rolshoven 2009] as the amplitude of the plastic strain increases, which
does not align with what we observed at the atomic scale. A fourfold increase in the
maximum amplitude only expanded the shear band by 20%. This suggests the need for a
new, potentially incremental, description of the gradient term.

3.5 Fracture
While plasticity and indentation resistance can be important in certain applications, such as
electronics and the optical industry, the commonly associated failure mode in silicate glasses
is fracture. However, despite the significance of the topic, relatively few papers have focused
on atomic-scale modeling of the phenomenon. This may be due to the complexity of the
subject, which involves a relatively large number of atoms (leading to long computational
times) and challenges in post-processing atomic-scale results to identify the appropriate
continuum-scale theory.

The literature mainly focuses on small samples with a thickness of less than 50 Å,
which we found to be insufficient to minimize finite size effects. Due to the difficulty of
identifying a crack in discrete systems, V-shaped notches are typically used to initiate cracks
[Rountree et al. 2007, Rimsza et al. 2018]. The issue with this method is that the energy
release rate associated with a defect that is not sharp is zero. As a result, linear elastic
fracture mechanics becomes inapplicable, and a more advanced approach that includes
an internal length is required. Nonetheless, many studies still rely on Griffith’s original
description. Consequently, the results derived from these simulations do not adequately
capture crack initiation [Hao & Hossain 2019, Du et al. 2021].

Despite these limitations, such studies have successfully demonstrated key atomic-scale
phenomena, such as the distinction between free surface energy [Rimsza et al. 2017] — used
in materials science and surface chemistry — and fracture surface energy [Griffith 1921],
which is used in fracture mechanics. However, these simulations have not yet provided a
sufficient mechanics description of the results [Rimsza et al. 2018]. Therefore in this chapter
we will show how to identify diffuse damage at the atomic scale and explain the difference
between free and fracture surface energies.

Fracture simulations were carried out on a 3D silica samples, with dimensions Lx ×
Ly × Lz = 400× 300× 100 Å3, containing ≈ 800k atoms. After periodic bulk heating and
quenching, local stiffness was calculated. Periodicity in the xy plane was then suppressed,
while periodicity in the z direction was maintained. A rounded incision with a radius of
rc was made to create the initial crack. The atoms were incrementally displaced based on
a K-field associated with mode I crack opening on the outer boundaries at a distance of
Hfix = 15 Å. This distance is larger than the cutoff used for the interatomic potential.

The atomic results were then coarse-grained. As a result, the following continuum
quantities were available in both Lagrangian and Eulerian configurations: displacements u,
finite strains ε, Cauchy stresses σ, potential energy density ψpot, and mass density ρ.

When choosing the coarse graining width, we found three key aspects that may be
influenced by the homogenization process: (i) the elastic behavior, which indicates at what
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scale discrete atoms can be approximated as a continuum; (ii) the diffusion width of damage;
and (iii) the effect of the free surface on local potential energy.

Our findings indicate that for a minimal length scale of w = 8 Å, the elastic strain energy
matches the local potential energy. This result aligns well with our previous findings on
local elasticity. Additionally, we show that a width of w = 8 Å has minimal impact on
damage diffusion. Lastly, we demonstrate that the free surface energy is highly localized
on the surface, implying that while varying w may alter the local maximum amplitude, it
does not affect the overall sum of the energy change. Detailed explanations are provided
below.

Damage is calculated in the Lagrangian configuration following principles of solid me-
chanics, as most quantities are better defined in the initial state. Only Cauchy stresses
needed to be interpolated back from the deformed state because coarse-graining atomic
pairs in the initial configuration that were no longer in contact often resulted in locally neg-
ative strain energy, which is physically impossible. This interpolation involved displacing
grid points of the Lagrangian configuration by their coarse-grained displacements, followed
by interpolating stress values from the Eulerian grid to these displaced points.

To account for free surfaces in the Eulerian configuration that appear on the crack
lips, a correction multiplier was defined based on the ratio of locally interpolated densities
from the deformed configuration to those from the initial configuration. This adjustment
compensates for the absence of material at the free surfaces in the deformed configuration,
ensuring accurate calculations when parts of the coarse-grained volume are empty.

As amorphous materials lack the ordered structure of crystals, therefore initial local
stresses can be found in the quenched material. We assume that these stresses store elastic
energy, which is quantified and added to the deformation calculated during loading. The
initial strain field can be calculated using linear elasticity as: ε0 = C−1σ0, where C is the
local stiffness tensor and σ0 is the local initial stress tensor. The initial elastic strain energy
density was then obtained by ψel,0 = 1

2σ0 : ε0. We note that this quantity was significantly
smaller than the energy from the applied deformation.

To calculate local damage, we used the well-known phase-field formulation:

Ψint (u, d) =
∫

Ω
ψel (u, d) dΩ + gcΓ (d,∇d) , (3.13)

where ψel is the strain energy density1:

ψel (u, d) = (1− d)2
ψ+

0 (ε (u)) + ψ−0 (ε (u)) , (3.14)

with d representing the damage, ψ+
0 and ψ−0 representing the tensile and compressive parts

of the undamaged strain energy densities, respectively [Molnár et al. 2022].
The overall fracture toughness gc and the fracture surface Γ define the fracture energy

in the formulation:

Γ = 1
lccω

∫
Ω

(
ω (d) + l2c |∇d|

2
)
dΩ. (3.15)

In this work, we use the AT1 form with ω = d and cω = 8/3. The internal length scale
of the phase-field model is denoted by lc.

From eq. (3.14), the Cauchy stress can be obtained as σ = ∂ψel
∂ε . Therefore, under the

assumption of linear elasticity, we have ψel = ψel,0 +
∫ ε

ε0
σ : dε ≈ ψel,0 + 1

2σ : εJ , where
ε represents the Hencky strain tensor, and J denotes the determinant of the deformation

1Capital Ψ is the global value integrated over the whole domain, while small ψ refers to local energy
densities.
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gradient tensor, accounting for volume variations and ψel,0 is the initial strain energy density
after quenching.

We recall that from simulations, the stress, strain, and local stiffness fields are available,

allowing the damage to be defined as d = 1−
√

(ψel−ψ−0 )
ψ+

0
.

Fig. 3.5a depicts the damage topology obtained by the atomic scale simulations in the
xy plane of the simulation box. Fig. 3.5b shows damage along y at x = 125 Å with a
Gaussian fit. Finally, Fig. 3.5c presents the width of the Gaussian function along the crack.
The colors represent the maximum damage values.

Finite element model updating (FEMU) was then performed to identify fracture prop-
erties, such as the critical energy release rate (gc) and the internal length scale (lc). The
objective was to update the parameters of a constitutive model so that the results of the
phase-field simulation, under appropriate boundary conditions, match as closely as possible
the results obtained through molecular scale simulations in the sense of a given norm. We
used an AT1 description for the phase-field model with a quadratic degradation function.

The FEMU utilizes the undamaged tensile energy (ψ+
0 ) to obtain the local phase-field

damage variable. The approach involves iteratively adjusting the material properties, which
are considered homogeneous in this case, to minimize the difference between the damage
field obtained from the ratio of damaged to undamaged energies (dMD) and the damage
field from finite element calculations (dFEM).

Λ = argmin[dMD − dFEM (Λ)]T [dMD − dFEM (Λ)] , (3.16)

with Λ =
[
gc lc

]
. The iteration is done by solving the following linear equation system:

MdΛ = b, (3.17)

with

M =
[
∂dFEM
∂Λ

]T [∂dFEM
∂Λ

]
,

b =
[
∂dFEM
∂Λ

]T [dMD − dFEM (Λ)] .
(3.18)

The fracture properties were changed until the maximum change in error was smaller
than 10−6. The procedure was executed for 20 equally spaced 2D slices in the xy plane
along the z direction.

3.5.1 Regularization length
The simulations demonstrate that damage around the crack is diffused rather than localized,
extending into the material beyond the immediate crack tip. This diffusion width is notably
larger than the coarse-graining width used to transition from atomic to continuum scales,
indicating that the CG width is sufficient to capture essential damage features but the actual
physical damage spreads further. Specifically, for fully opened cracks, the damage zone
varies in width between approximately 16 and 23 Å, reflecting a non-uniform distribution
of damage that suggests its extent may be influenced by local material properties or stress
concentrations. This local variability implies that damage diffusion is a local property
rather than a purely global phenomenon. Interestingly, the Finite Element Model Updating
process produced an internal length scale (lc) ranging from 12 to 20 Å, which correlates well
with the observed geometric damage width, even though lc is treated as a global parameter
in the model. This correlation suggests that, while damage diffusion is locally variable, the
global parameter lc effectively captures the average behavior of the damage width.
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Figure 3.5: Damage field obtained from atomistic simulations: (a) Distribution of damage
in the middle plane of the sample. (b) Circles represent the damage profile along the y
direction at x = 125 Å, fitted with a Gaussian function of maximum height dmax and width
l. (c) Variation of the fitted width l along the crack and under different global loading states,
color-coded by dmax according to the colorbar. The blue region indicates lc identified using
the FEMU scheme based on the phase-field formulation.

3.5.2 Surface free energy and toughness

The free surface energy was calculated by dissecting (cutting it in half) the samples. The
periodic boundary condition in the y direction was suppressed, and mechanical equilibrium
was achieved by minimizing the potential energy. The energy difference divided by the
newly exposed surface gives 2γ. This quantity was found to be independent of the sample
size once it exceeded a certain minimum.

We determined 2γ = 2.8±0.2 J/m2, slightly higher than experimental measurements but
within the same order of magnitude (≈ 1 J/m2) [Kimura et al. 2015]. This value correlates
well with simulations using more sophisticated potentials [Rimsza et al. 2017].

In deformed samples, the free surface energy density (ψFSE) was identified by subtract-
ing the elastic strain energy (ψel) from the coarse-grained potential energy density (ψpot).
The study’s analysis of the free surface energy profile revealed important insights into the
localization of energy changes associated with crack formation. The profile width of ψSFE
is observed to be 8 Å, indicating that the energy change is highly localized to the region
immediately surrounding the crack. When the convolution is omitted and energy change
is instead calculated by averaging over 1 Å slices, a pronounced localized peak emerges.
This suggests that the energy change due to the formation of the free surface is primarily
a result of surface relaxation due to the loss of atomic connectivity at the crack, rather
than a diffusive process that would penetrate deeper into the sample, as is often seen with
damage diffusion.

In literature, crack length is often calculated based on an assumed position of the crack
tip, either from local density [Rimsza et al. 2018] or using a singular Williams series fit
[Roux et al. 2009]. These methods are not precise enough to identify the crack front in a
discrete system, nor cannot they capture multiple crack fronts. Furthermore, as they assume
a sharp crack, they are unable to identify the size of a potential process zone. Analyzing
the free surface energy (ψFSE) provides a more precise understanding of energy changes
associated with crack formation. This energy localization is consistent across different
sample conditions, making ψFSE a reliable metric for calculating crack length. The crack
length derived from ψFSE showed good correspondence to phase-field model calculations,
validating this method as an accurate alternative to traditional approaches.
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(a) Energy equilibrium (b) Fracture toughness (c) Effect of notch radius

Figure 3.6: (a) Energy balance showing the external work (Wext), the potential energy
(Ψpot), the elastic strain energy (Ψel) and the free surface energy (ΨFSE = Ψpot−Ψel). (b)
Energy release rate calculated with various methods. The damage energy (Ψd) is obtained
by subtracting the elastic strain energy from the external work. The fracture surface from
the free surface energy is obtained by ΓFSE = ΨFSE/(2γ).

In the context of global energy equilibrium shown in Fig. 3.6a, the energy balance anal-
ysis links additional dissipation during crack propagation to damage mechanisms. Under
tensile stress, minimal energy dissipation is attributed to plasticity and ring folding, in-
dicating their limited role in overall energy dissipation. The total dissipation, defined as
the difference between external work and elastic strain energy, correlates well with fracture
processes, with free surface energy being a critical but partial component. The consistency
across different methods for calculating total energy dissipation, including FEMU fits and
energy balance, highlights the robustness of the analysis. The fracture surface energy cal-
culated post-crack initiation remains consistent across various methods, emphasizing the
importance of accurately quantifying damage to understand energy dissipation during frac-
ture as shown in Fig. 3.6b.

However, the study also highlights a significant limitation in the phase-field approach
to define gc. This method integrates both damage-induced toughness and free surface
energy, potentially unifying the distinct contributions of these two components. A more
refined approach to fracture energy would involve separating free surface energy, treated as
a surfacic term, from damage, considered a volumetric term. The original Mumford–Shah
functional offers a theoretical framework for this separation, though its implementation
presents significant challenges for variational methods. Despite these difficulties, such a
distinction could lead to a more nuanced understanding of the fracture process and enhance
the precision of energy dissipation models.

3.5.3 Comparison between methods
The comparison between atomic-scale simulations, the coupled criterion, and the phase-
field model is shown in Fig. 3.6c for three different notch radii (rc). The phase-field model
was based on the inhomogeneous Young’s modulus and Poisson’s ratio obtained from the
atomic-scale model, with a constant toughness of gc = 10 J/m2 and an lc = 16 Å. For
the calculation, the AT1 form was applied. On the other hand, the coupled criterion was
calculated on a homogeneous body. The details of the calculation are presented in Appendix
A.1.

As shown in Fig. 3.6c, the crack length for the smaller rc = 5 and 10 Å cases are almost
indistinguishable, indicating that the crack initiates once a critical loading is achieved. This
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critical loading, when expressed in terms of the global energy release rate (GI = K2
I (1−ν2)
E ),

aligns with the Griffith-like description, as the crack initiates at GI,cr ≈ 10 J/m2 for small
rc values.

However, when the notch radius is large (rc = 100 Å), the crack initiates at a higher
loading and starts with a large, unstable jump. Unfortunately, this jump varies between
methods, as the atomic-scale simulations are highly inhomogeneous, not only in stiffness
but potentially in toughness as well. Nonetheless, quantitatively, the results of the three
methods show good correspondence, validating the existence of a regularization length
below which the crack behaves in a sharp manner.

3.6 Concluding remarks
In this chapter, we explored the strength and toughness of silicate glasses through atomic-
scale simulations, focusing on the role of composition, pressure, and internal mechanisms
like densification and plastic deformation. By analyzing the elastic, plastic, and fracture
behaviors of silicate glasses, we demonstrated the importance of pressure and composition
in determining their mechanical response, particularly highlighting how sodium content
affects both densification and yield behavior.

The results emphasize a trinity of key mechanical responses in silicate glasses: elastic-
ity, plasticity, and fracture. Elasticity dominates at small deformations, with pressure and
composition influencing the material’s stiffness. Plasticity emerges at higher strains, par-
ticularly through densification mechanisms that are highly dependent on sodium content.
Finally, fracture processes were shown to involve complex interactions between atomic-scale
damage, surface energy, and crack propagation.

The chapter underscores the utility of advanced simulation techniques, such as molec-
ular statics and the phase-field method, in capturing the intricate mechanical responses of
silicate glasses. These methods provide insights into the internal length scales governing
both plasticity and fracture, furthering our understanding of how atomic-level phenomena
influence macroscopic mechanical behavior.

Furthermore, understanding the transition from localized atomic events to macroscopic
material behavior is crucial for improving predictive models. Future work should also focus
on refining constitutive models to better capture the interaction between densification and
plastic deformation at various length scales.

In summary, to fully capture the behavior of silicate glasses, future research must ex-
plore the interplay between densification, plasticity, and damage. Atomic scale simulations,
combined with experimental validation and multi-scale modeling, will be critical in driving
this understanding forward, leading to more accurate models and innovative solutions for
the use of silicate glasses in various applications.



Chapter 4

Architected Materials

The chapter examines the mechanical behavior of architected materials, focusing on beam
lattices and their optimization. Using both beam theory and Cosserat elasticity, it high-
lights the impact of microstructure on material properties like stiffness, strength, and frac-
ture toughness. The Cosserat model proved to be more effective in capturing size effects
and rotational deformations in lattice structures. Fracture behavior was studied through
beam and phase-field models, showing that homogenized toughness values remain constant
during crack propagation. An anisotropic phase-field approach was developed to capture
directional fracture behavior. Additionally, topology optimization using the Cosserat model
yielded accurate, optimized lattice structures, outperforming traditional Cauchy models.
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4.1 Motivation
Historically, lattice and truss elements have been employed in the construction of large-
span structures, such as bridges, roofs, and towers, to reduce mass while simultaneously
enhancing global stiffness. Early structural engineers recognized that increasing the spac-
ing between bent components would raise both tensile and compressive forces, thereby in-
creasing the bending inertia quadratically with distance, according to the Huygens–Steiner
theorem. This additional bending inertia not only amplified stiffness but also enhanced
the overall stability of the structure. Consequently, such designs allowed structures to span
considerable distances that would not be achievable with solid forms.

This phenomenon mirrors what is observed in nature [Nepal et al. 2023] where struc-
tural hierarchies are evident in the microstructure of various load-bearing components.
Examples include cork [Chen et al. 2010], several diatom species [Jang et al. 2013], honey-
combs [Mousanezhad et al. 2015], and trabecular bone [Lakes 1993, Ritchie 2011]. In each
case, smaller beam-like elements form a complex network designed to withstand specific
loads.

Recent advancements in additive manufacturing have enabled the fabrication of meta-
materials with customized microstructures [Askari et al. 2020]. This approach not only
enhances stiffness but also strengthens the load-bearing elements at the microscale. As
materials approach their microscopic length scale, the size and impact of manufacturing de-
fects diminish, allowing materials that are macroscopically brittle to exhibit ductile behav-
ior [Ritchie et al. 2009, Zheng et al. 2016, Bauer et al. 2016]. This results in lightweight,
stiff, and yet resilient materials.

This chapter focuses on the homogenization and optimization of these beam lattices,
highlighting the need for more sophisticated models than the conventional anisotropic
Cauchy models to accurately describe their behavior.

Here, the superscript©m denotes a microscopic or beam quantity, while©M represents
a macroscopic, homogenized Cosserat quantity.

4.2 Elasticity of beam lattices
Main studies on architected materials use the classical framework of Cauchy’s theory, and
the methods are thus suitable for large-scale transitions but limited to exhibiting the mi-
crostructure size effects. Moreover, such first-order frameworks fail when the scale separa-
tion assumption does not prevail (e.g., when topology cells are kinematically coupled as in
some compliant mechanisms). Enriched kinematic homogenization schemes are thus needed
to efficiently design architected materials and capture local microstructural effects, mutual
interactions, non-localities, or instabilities.

One of the first higher-order theories was proposed by the Cosserat broth-
ers [Cosserat & Cosserat 1909]. They enriched the simple Cauchy model with an inde-
pendent rotation field gradient. This way, the model had 3 displacement and 3 rotational
degrees of freedom (in 2D: 2 displacements DoFs and 1 rotation DoF). This theory was the
first to define couple stresses and to render the Cauchy stress tensor non-symmetric. Since
its first introduction, Toupin [Toupin 1962] formulated the energy density function using
the classic displacement and rotation gradient terms. Finally, Mindlin [Mindlin 1963] gave
the linearized mathematical theory, serving as the basis of the variational solution.

Since its first introduction, the Cosserat theory has been used in numerous fields, such
as granular materials [Li et al. 2010], masonry structures [Addessi et al. 2010], compos-
ites [Lakes 1991], or even human bone [Lakes & Saha 1979, Park & Lakes 1986]. However,
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most importantly, it was shown that Cosserat elasticity efficiently captures the effect of the
intrinsic length scale in cellular structures [Rueger & Lakes 2016]. The constitutive equa-
tions of the model can be written in several forms ranging from a single added constant
to Hooke’s law [Aifantis 1984] to the entirely redefined stiffness matrix [Zhang et al. 2008].
However, one of the main disadvantages of the Cosserat theory is that it has too many
material parameters.

The classical description of continuum mechanics is ill-suited to characterize the response
of materials with an inhomogeneous microstructure, i.e., a characteristic microscopic length
scale. However, the mechanical behavior of architected materials (e.g., lattice structures)
is often determined by their specific micro-scale configurations. Therefore, the Cosserat
theory (or micropolar elasticity) incorporates rotational degrees of freedom (φ) into the
mechanical description.

In this work, the Cauchy model is completed with an additional set of equations de-
scribing momentum equilibrium in 2D:

∇ · σ = 0 in Ω,
∇ ·m+ σε̂ = 0 in Ω,
σ · n = t̄ on ΓN ,
m · n = M̄ on ΓN ,
u = ū on ΓD,
φ = φ̄ on ΓD.

(4.1)

In this equation, σ is now a non-symmetric (σxy 6= σyx) force-stress tensor, m is the
moment or couple-stress tensor, and ε̂ is the Levi-Civita symbol. The bar symbol represents
external forces (̄t), moments (M̄), prescribed displacements (ū), and rotation (φ̄).

The literature [Forest et al. 2001] recounts various ways to define linear elastic behav-
ior. In this paper, we chose to correlate the complete stress tensor to the deformation
components using the following model:

[
σ

m

]
=



σx
σy
σxy
σyx
mx

my

 = C
[
ε

κ

]
= C



εx
εy
εxy
εyx
κx
κy

 . (4.2)

As a result, the first four elements of the stress vector correspond to the Cauchy stress
components, however paying attention that in the Cosserat case σxy and σyx are not nec-
essarily equal. Finally, the last components are the couple stresses.

Similarly the deformation components can be written as a function of the macroscopic
degrees of freedoms, the displacements (u) in the x and y directions and the rotation around
the z axis (φ):

εx = ∂ux
∂x

, εy = ∂uy
∂y

, εxy = ∂ux
∂y

+ φ, εyx = ∂uy
∂x
− φ, κx = ∂φ

∂x
, κy = ∂φ

∂y
. (4.3)

As a result in 2D, the stiffness tensor takes the form of a 6 × 6 matrix. However, one
of the main disadvantage of the Cosserat theory, that its rigidity is available only for a few
types of lattices.

Bottom-up homogenization methods are usually applied to determine the elas-
tic Cosserat constants of lattice structures. Two main approaches exist: (i) the
micro-scale is represented by an inhomogeneous Cauchy continuum [Forest & Sab 1998,
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Figure 4.1: Cosserat homogenization: (a) Discrete Euler-Bernoulli beam model; (b)
homogenized Cosserat medium. (c) Emerging Cosserat length scale for various struc-
tures. The continuous line represents numerical, while symbols denote analytical results
[Pradel & Sab 1998, Sab & Pradel 2009]. The angle shows the orientation of the horizontal
beams in the hexagonal (and bow tie) lattices.

Forest 1998, Forest et al. 2001, Forest 2002], and (ii) the lattices are modeled with either
Euler-Bernoulli [Pradel & Sab 1998, Sab & Pradel 2009, Reis & Ganghoffer 2012] or Tim-
oshenko–Ehrenfest beams [Liebenstein & Zaiser 2018]. The important difference is that in
the latter case, the rotational degrees of freedom are already present at the microscale. On
the other hand, with beam theory, the solid volume fraction cannot be represented.

In order to treat arbitrary microstructures in topology optimization and fracture, a
computational homogenization scheme was developed to calculate the stiffness components
of Euler-Bernoulli beam lattices. In essence, we made discrete beam calculation on an
RVE with periodic boundary conditions, then extracted average stress and strains. Finally
calculate Cosserat constants. The details are presented below.

4.2.1 Micro-macro kinetics
The Hill-Mandel energy condition states that the energy of the RVE at the microscale has
to be equal to the energy of the element at the macro-scale and can be written as follows
for the current problem:

1
V

nbeam∑
i=1

(Nm
i ε

m
i +Mm

i κ
m
i )Li = σM : εM + mM : κM + 3QM

...3GM . (4.4)

Here, the left side of the equation represents the total internal energy of the RVE shown
in Fig. 4.1a, consisting of Euler-Bernoulli beams. While the right hand side gives the
energy of the Cosserat medium at the homogenized macro-scale. This assumption allows us
to define work conjugate stress measures for the macro scale deformation components. The
macroscopic strain tensor εM , can be obtained from the RVE using the following equations:

εM = ∇uM + ε̂ 1
V

njoint∑
i=1

φiV
m
i , (4.5)
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where ∇uM is the displacement gradient tensor, V is the volume of the RVE, njoint is
the number of junctions in the RVE, φi are the rotations of these junction nodes, V mi are
the volumes defined by the Voronoi cell around each junction (shown in Fig. 4.1a with
transparent blue) and ε̂ is the Levi-Civita tensor.
εM and κM are the exactly the same deformation components, which are used in the

Cosserat theory.
Finally, 3GM represents the second order deformations [Geers et al. 2001,

Kouznetsova et al. 2002] which arise from the finite size of the RVE, but do not
contribute to the homogenization. It is calculated by 3GM = ∇εM.

The work conjugate macroscopic stress measures can be obtained from the RVE beam
simulations using the following equations:

σM = 1
V

nbeam∑
i=1

Fmi ⊗ li, (4.6)

where Fm
i contains the forces acting on a beam element (which is constant along the beam)

in a Cartesian coordinate system and li is the so-called beam vector which is the difference
between the midpoint between two junctions and a junction point.

The so-called couple stress tensor mM can be obtained using the following equation:

mM = 1
V

nbeam∑
i=1

(
mm
i −

∥∥∥∥Fmi × 1
2 li
∥∥∥∥)⊗ li, (4.7)

where due to the 2D nature of the problem mm
i is a scalar, therefore it is sufficient to take

the length of the second term as cross product is perpendicular to the xy plane.
Finally, the third order stress tensor is defined as:

3QM = 1
2

nbeam∑
i=1

[
(Fmi ⊗ li)T ⊗XC,i + XC,i ⊗ (Fmi ⊗ li)

]
, (4.8)

where XC,i are the coordinates of middle point of the beam elements.

4.2.2 Periodic boundary conditions

To apply periodic boundary conditions on the RVE, the difference in the degrees of freedoms
are constrained between the opposite boundary nodes using Lagrange multipliers. For
example, for boundary nodes j, the differences can be calculated as follows:

(
u2
j − u1

j

)
=
(
∇uM + I

)
· dXj + 1

2
3GM · (dXj ⊗ dXj)− dXj , (4.9)

and

(
ϕ2
j − ϕ1

j

)
= dXT

j κ
M , (4.10)

with dXj = X2
j −X1

j .
To apply a homogeneous rotation field (φM ), the junction nodes (nj) were rotated

clockwise. This act adds neither first, nor second order (curvature) deformations.
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4.2.3 Constitutive response
To calculate the Cosserat rigidity of the lattice structure, the RVE is deformed in six
different ways similar to the deformations of the Cosserat model: 2 axial extensions (εMx ,
εMy ), 2 asymmetric shears (εMxy, εMyx), and 2 curvatures (κMx , κMy ).

Six different quasi-static deformation cases result in 36 equations. The stiffness matrix
is symmetric. Therefore, in 2D, an anisotropic material can be described by 21 unknowns
with the Cosserat theory. The six individual equations were rewritten as an overdeter-
mined equation system (Arg min

c
[‖Mc− s‖]) relating the Cosserat moduli to the stresses.

The coefficient matrix (M, size: 36×21) contains six blocks with the applied strain values
for each deformation case. The stiffness components are the unknowns (c, size: 21×1):
c =

[
C11 .. C16 C22 .. C26 C33 .. C36 C44 C45 C46 C55 C56 C66

]T,
and the stress values are the constant terms in six blocks for each deformation case (s, size:
36×1): s =

[
.. σ

M,(j)
x σ

M,(j)
y σ

M,(j)
xy σ

M,(j)
yx m

M,(j)
x m

M,(j)
y ..

]T
. To solve the

overdetermined system QR decomposition was used.

4.2.4 Cosserat length
The Cosserat length is a key parameter in Cosserat elasticity, representing the scale at which
the material’s microstructural effects become significant. It is one of the smallest length
scales which already represents the microstructure in elasticity. Understanding the Cosserat
length is crucial for accurately modeling phenomena like size effects, where traditional
elasticity theories might fail to capture the nuanced mechanical behavior of materials. There
are multiple ways to define this elementary length scale. For simplicity we will take the
ratio of the mean bending stiffness and the shear stiffness:

lcoss =
√
C55 + C66

2C33
. (4.11)

Furthermore this analysis serves as a verification for the numerical procedure pre-
sented above. Stiffness results are available for equal side rectangular and hexagonal lat-
tices [Pradel & Sab 1998, Sab & Pradel 2009]. Fig. 4.1c shown lcoss normalized by the
microscopic length of the individual beams Lm as a function of the slenderness of the
beams.

It can be seen that the analytic results for both structures are in agreement with the
numerical results, validating the technique used to determine the stiffness of the beam
lattices.

Furthermore, it is clear the Cosserat length scales linearly with the length of the beams,
and effected significantly by the type of the structure. However, the height of the beam
plays a minor role in its definition. Furthermore, we found that the length is always smaller
then the characteristic size of the micro-scale structure.

4.3 Fracture in architected materials
Even if works in the past few decades have concentrated on predicting the strength of ho-
mogenized microstructured materials [Pichler & Hellmich 2011, Kolpakov & Rakin 2020],
they struggle to predict the materials resistance in presents of a crack. Due to the theoret-
ical stress singularity in the homogenized model at the crack tip, scale separation cannot
be assumed, as the gradient of the stress peak becomes comparable to the scale of the mi-
crostructure. While the theoretical concept of homogenized fracture toughness was initially
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introduced by references [Roux & Hild 2008, Vasoya et al. 2016, Lebihain et al. 2021], it
has thus far been demonstrated only for Gaussian random microstructure model materials.
We asked ourselves, if the unit cell of a periodic beam lattice contains all the information,
how can the materials toughness be calculated? As brittle fracture is a unique problem
characterized by its dissipative nature, stress localization at the crack tip, and the coupling
with the microstructure, it is still a topical debate if intrinsic fracture properties can be
defined independent of the macroscopic structural context.

This section seeks to answer whether it is possible to identify a homogenized phase-field
model that behaves similarly to the beam lattice in terms of fracture. First, it introduces
the mechanical problem under investigation and outlines the objectives of the analysis.
Specifically, it compares two approaches to modeling fracture in architected materials: the
Euler-Bernoulli beam theory and the phase-field fracture technique.

Fracture resistance is characterized differently by each approach. In the beam model, the
microstructure is explicitly represented, with individual beams modeled according to their
geometry and material properties. When a beam fractures, it can be discretely identified. In
contrast, the phase-field technique treats the material as a continuum, using homogenized
material parameters to describe its behavior. Here, cracks emerge gradually as a damage
variable diffuses through the material.

For the beam model, the microstructure is defined by parameters such as the height
(hm) and lengths (Lm) of the elementary beams. These structures are characterized by
their material properties, which describe stiffness (Young’s modulus, E) and strength (the
maximum tensile stress they can withstand, σmc ).

On the other hand, the phase-field approach is a diffuse damage model that represents
the elastic behavior of the material using homogenized continuum stiffness, described here
by the Cosserat theory. This theory is essential for capturing the complex behavior of
beam lattices, as demonstrated previously [Molnár & Blal 2023]. Fracture initiation and
propagation in this model are governed by the critical energy release rate (gMc , referred to
as toughness) and a regularization length scale (lMc ), which controls the extent of damage
diffusion.

This analysis seeks to answer three key questions: (i) Can we define a unique fracture
toughness for a given beam lattice? If so, what parameters influence this toughness? (ii) Can
we develop a phase-field continuum model that accurately describes cracks in beam lattices?
(iii) How do the predicted fracture patterns compare with experimental observations?

For consistency, this study focuses on a single lattice type: the rectangular beam lattice
with equal beam lengths in both directions, analyzed in 2D.

4.3.1 Fracture in beam lattices
Fracture in beam lattices is defined by the failure of individual beams. We consider beams
failed, when the maximum axial stress equal or overcomes their elementary strength σmc :

σmn = Nm

A
+ |M

m|
I

hm

2 ≤ σ
m
c , (4.12)

with Nm and Mm being the normal force and the bending moment acting on the beam. A
and I are the area and the bending inertia of the rectangular beam cross section.

In this case, their stiffness, thus the stress which they support goes to zero. Basically, we
deactivate the element, only leaving a very small residual stiffness to avoid the singularity
of the global stiffness matrix of the model.

The length of the crack (a) is measured by the incremental position of the furthest
beam broken. The advantage of this consideration is that it remains consistent with a
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Figure 4.2: (a) Plate with a central crack of length 2a0, composed of a rectangular beam
lattice with beam dimensions Lm and hm. (b) One-quarter model of the symmetric geom-
etry with size LM , with broken beams highlighted in red. (c) Energy release rate GM as a
function of normalized crack advancement.

macroscopic (continuum) approach, where we follow a crack tip. The disadvantage, is that
we have trouble following branched cracks and potential crack widening.

Nevertheless, if the crack length is defined, the differential energy release rate (GM ) is
expressed by the following energy balance equation:

GM (a+ ∆a/2) = −Ψint (a+ ∆a, P )−Ψint (a, P )−∆Wext (P )
∆a , (4.13)

where Ψint is the elastic strain energy, ∆Wext is the external work, and P represents the
applied displacements or external forces on the boundaries. Here, a is the initial crack
length, and ∆a is the crack increment.

Let us consider a simple problem depicted in Fig. 4.2a. A plate with a 2a0 length crack
in its middle is subjected to tensile stress on its upper and lower boundaries. While the
perpendicular sides are left free to displace. The plate is constructed from a rectangular
beam lattice with an elementary beam length of Lm and a beam height of hm. The beams
have a Young’s modulus of E and a failure strength of σm. As the problem is symmetric, we
only model one forth of the geometry depicted in Fig. 4.2b. The size of the model is taken as
LM with a crack length in the bottom left corner of a0. On the left and bottom sides (except
along the crack) symmetric boundary conditions are defined in both the displacement and
rotation DoFs. The load is applied through displacement Dirichlet boundary conditions on
the top. The broken beams are highlighted in red.

Finally, Fig. 4.2c depicts GM as a function of the normalized crack advancement for a
model with Lm = 5 mm, E = 3 GPa, h = 1 mm and σmc = 100 MPa. The geometry:
a0 = 25Lm and LM = 150Lm was used. It can be seen that after initiation, the energy
release rate changes less than 10%, thus can be considered constant.

We found, that for a given set of structural and material parameters the energy release
rate, GM , remains nearly constant as the crack advances. This invariance suggests that
GM is a characteristic property of the lattice structure itself in stable propagation.

The impact of macroscopic geometry on GM is minimal, with significant changes only
observed when the geometry approaches the scale of the individual beams. This stability of
GM with respect to macroscopic dimensions highlights its role as an intrinsic characteristic
of the lattice.
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Microstructural and material properties have a more pronounced effect on GM . The
beam height hm significantly influences GM , showing a strong linear relationship. In
contrast, the slenderness has a smaller effect, which diminishes as its value increases.
Material properties also affect GM : it scales quadratically with the failure strength σmc
and exhibits a hyperbolic dependence on Young’s modulus E. These results are con-
sistent with theoretical models link Irwin’s length (see eq. 2.6) and phase-field studies
[Molnár et al. 2020a, Molnár et al. 2024], suggesting a correlation between discrete micro-
scopic parameters and homogenized phase-field characteristics. The detailed analysis can
be found in Ref. [Molnár & Réthoré 2024].

4.3.2 Equivalent fracture toughness
The previous section demonstrated that the energy released in a rectangular beam lattice
remains relatively constant with respect to the length of the crack. This result motivated
us to define a continuum model capable of reproducing the crack patterns observed in the
discrete beam lattice. As the elastic stiffness of the material suggests that the response may
be orthotropic, therefore we turned our attention to anisotropic phase-field formulations.

In phase-field simulations, anisotropic can be induced in a hard or soft manner. The hard
representation [Nguyen et al. 2017] requires a penalty function which acts on the gradient of
the damage in the phase field formulations. While in the soft model [Bleyer & Alessi 2018,
Scherer et al. 2022] introduces a directional dependent gMc . The soft model is preferred in
our case as it accurately describes the behavior of the unitary cell structure independent
of crack length and geometry. While promising, this soft representation has not yet been
calibrated to a real cell structures.

In this work, we introduce multiple damage variables (di) with directional fracture
toughness and length scale values. Thus, the traditional damage energy, introduced in
eq. (2.10) for the AT1 formulation, is replaced by the following expression:

Ψd (d,∇d) =
n∑
i=1

gMc,i
cωlMc,i

∫
Ω

[
di +

(
lMc,i
)2|∇di|2] dΩ. (4.14)

With the anisotropic multi-phase-field model, the key is to correctly determine how
many damage variables are needed and which variable acts on which stiffness component.
In revers, energy stored by the stiffness component will contribute to the crack driving force
to induce damage in a given direction.

The undamaged Cosserat stiffness of a rectangular lattice results in a diagonal matrix
with constants [Pradel & Sab 1998, Sab & Pradel 2009]:

C11 = C22 = hm

LmE,

C33 = C44 =
(
hm

Lm

)3
E,

C55 = C66 = (hm)3

12Lm E.

(4.15)

From the structural configuration of a rectangular grid, it is easy to observe that there
are two principal directions. Therefore, we will use two independent damage variables
(n = 2 in eq. 4.14), where d1 corresponds to the horizontal grid, and d2 to the vertical grid
direction.

Until this point, we have not discussed how damage variables affect the stiffness matrix.
This step is crucial, as it determines which deformation induces which damage. To identify
the couplings, we took a representative volume element (RVE) of a rectangular lattice, re-
moved the horizontal beams, and then the vertical beams, before recalculating the Cosserat
stiffness using the computational homogenization method discussed in 4.2.
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It is likely no surprise that removing the horizontal beams causes C11 and C55 to drop to
0. However, it was less obvious that C44 also vanishes. The remaining stiffness components
remain unaffected. Conversely, when the vertical grid is removed, the opposite effect occurs:
C22, C33, and C66 drop to 0. Based on this investigation, we can deduce that the degradation
functions act on the stiffness components as follows:

C =

 g (d1, χ11)C11
g (d2, χ22)C22 ∅

g (d2, χ23)C33
g (d1, χ14)C44

sym. g (d1, χ55)C55
g (d2, χ66)C66

 , (4.16)

with special degradation functions [Lorentz & Godard 2011]:

g (d) =
(

1− d
1 + d · χ

)2
, (4.17)

where χ is a parameter, which describes stress localization in the lattice structure from a
macroscopic perspective.

The traditional phase-field approach requires two parameters to be identified: the frac-
ture toughness and the internal length scale. Consequently, two types of tests are recom-
mended. The first test represents the "flawless" behavior, where no cracks are present, while
the second test measures the response when a crack is introduced.

In the first test, the homogeneous phase-field solution is solved. This step involves
neglecting the gradient of the damage in eq. (4.14), then taking the derivatives with respect
to di and solving the resulting equations. Below, we demonstrate this process for d1, but
the equivalent method is used for d2. The aim is to define an acceptable gMc,1/lMc,1 ratio and
the χ1i localization constants.

∂Ψ
∂d1

= 0→ ∂ψMel
∂d1

+
3gMc,1
8lMc,1

= 0. (4.18)

In the AT1 model, the maximum stress is reached when the deformation is at its peak,
but d1 is still 0. Therefore, using ∂g(d1=0,χ1j)

∂d1
= −2 (1 + χ1j), we obtain:

∑
j

2 (1 + χ1j)ψcr0,j =
3gMc,1
8lMc,1

, (4.19)

where ψcr0,j are critical deformation energies, identified using the RVE of the beam model.
To determine χ1j , we assume that the phase-field model should break at the same state as
the RVE in each independent deformation. For instance, in the case of pure unidirectional
extension in the x direction, we can write:

(1 + χ11)C11
(
εMx,cr

)2 =
3gMc,1
8lMc,1

, (4.20)

where εMx,cr is the critical deformation applied to the RVE when the local maximum tensile
stress reaches the microscopic tensile strength σmc :

εMx,cr = σmc
E
. (4.21)

For the rectangular grid, this value can be identified analytically for εMx , however could
be calculated numerically for arbitrary structures and deformations.



4.3. Fracture in architected materials 63

By applying the same procedure on each deformation case, assuming that in each step
the gMc,1/lMc,1 are equal, and normalizing each row, that χ11 = 0 and χ22 = 0, we can identify
χ to be:

χ =
[

0 0 0 8 2 0
0 0 8 0 0 2

]
, (4.22)

where each row corresponds to the ith damage variable and each column corresponds to the
given member of the stiffness tensor (now diagonal).

From these results it is clearly visible, that shear for example generates a stress peak 3
times larger, than unidirectional extension in the rectangular lattice. This value corresponds
exactly to the square root of the ratio 1 + γ14, which associated with the energy difference
in the phase-field model between extension and shear.

Of course these parameters would have to be recalculated for a different lattice type,
and χ would potentially become longer as matrix C might have off-diagonal elements as
well.

The homogeneous solution calculated using the beam model and the phase-field formu-
lation is compared in Fig. 4.3a for different load angles. It is visible that both methods
agree at pure deformations such as ω = 0◦, 45◦, 90◦. This is due to the calibrated constants
of χ. When mixed, there is a small difference due to the fact that in the beam model the
stresses are summed up, while in the phase-field approach, the energies.

In the phase-field calculation compressive and tensile strain energies are distinguished
only for the two axial components. In other words, if εMx or εMy are smaller then 0, their
energies do not contribute to the crack driving force, and vice versa the stiffness in this
cases are not degraded.

The homogeneous solution helps to identify appropriate ratios for gMc /lMc . However, to
fully calibrate these parameters, an additional test case is required. Typically, in phase-field
simulations, one uses a scenario where size effects are minimal (e.g., no defects) and a case
involving a sufficiently large crack, as in classical fracture mechanics (Griffith-type cases).

To investigate the impact of initial defect size, the maximum force was recorded at
two key points: when the crack initiated and when the sample reached its maximum load-
bearing capacity. Fig. 4.3b shows the moment of the first beam fracture with red circles and
the final load-bearing capacity with red crosses. The critical loading is normalized using
the homogeneous solution:

σMc,y = σmc
hm

Lm
. (4.23)

When a0 < Lm, the critical loading matches the homogeneous solution since the crack
is smaller than the beam spacing. As a0 increases, a power-law behavior is observed in both
crack initiation and maximum loading, aligning with linear elastic fracture mechanics.

Thus, by setting lMc equal to Lm, the phase-field results closely replicate those observed
in the beam model. It is important to note that, due to the gradual appearance of damage
in the model, pinpointing the exact loading state corresponding to the first beam fracture
is challenging. For the remainder of the analysis, we therefore set lMc,i = Lm. We note that
a similar transition as a function of initial crack length was observed in failure lodes exper-
imentally in 3 point bending for cordierite square lattices [Quintana-Alonso et al. 2010].

When eq. (4.21), (4.15) and Lm is substituted into eq. (4.20), we get:

gMc,1 = 8hm(σmc )2

3E . (4.24)
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Figure 4.3: (a) Homogeneous solution of the phase-field model compared with the beam
results. (b) Critical loading normalized by the homogenized macroscopic strength as a
function of the initial crack length.

From this equation we recover the correlations found in the beam simulations. The
critical fracture toughness has indeed a quadratic dependence on the tensile strength, a
hyperbolic dependence on Young’s modulus, and a linear dependence on the beam height.
Interestingly, Lm disappears from this correlation.

4.3.3 Experimental validation
The phase-field model was initially calibrated to the beam model for tensile opening, but
beam-architected materials are inherently anisotropic and may exhibit different behav-
iors under varying loading directions. To investigate the primary mechanical couplings
present in a rectangular beam lattice, we conducted a series of tests inspired by the Ref.
[Ayatollahi & Aliha 2009]. The basic concept involves extending a rectangular plate at two
of its opposite corners, which allows for the application of both tensile and shear loading
in a tensile testing machine with relative ease.

In the original study [Ayatollahi & Aliha 2009], the load was applied through pinholes in
homogeneous materials. However, due to the weakened nature of the material in our lattice
structure, a concentrated load could cause the sample to fracture around the point of load
application. To address this, we replaced the pinhole with a solid section and applied the
load using clamps.

In a rectangular grid, the orthotropic microstructure introduces a third notable direc-
tion, in addition to the orientation of the loading and the crack: the orientation of the
microstructure itself. To validate our numerical models, we selected four configurations
designed to test the relative loading between these directions:

- Case 1: Tensile opening with microstructure parallel to the crack,

- Case 2: Shear opening with microstructure parallel to the crack,

- Case 3: Shear opening with microstructure oriented at 45◦ to the crack,

- Case 4: Tensile opening with microstructure oriented at 45◦ to the crack.

These elementary cases are illustrated in the different rows of Fig. 4.4.
The experimental samples were cut from 5 mm thick polymethyl methacrylate (PMMA)

sheets using a laser cutter. The microscopic unit spacing was chosen to be Lm = 5 mm, with
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Figure 4.4: Comparison between experiments and simulations. Red highlights the cracks.
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a beam height of hm = 0.66 mm. The macroscopic size of the samples was LM = 141 mm.
Prior to the experiments, a series of numerical tests were conducted to determine the
appropriate length of the clamping zone. The clamping zone length and the initial crack
length were carefully set to ensure that fracture initiation occurred at the initial crack.
If the clamped zone was either too small or too large, the crack tended to initiate at the
edges of the clamped zone rather than at the intended location. Consequently, we selected a
clamped width of Lc = 10Lm = 50 mm and an initial crack length of 2a0 = 18Lm = 90 mm.

The results from these tests are displayed in the first column of Fig. 4.4, with the cracks
highlighted in red.

To replicate the asymmetric crack initiation observed in the experiments, the tensile
strength and fracture toughness in the numerical models were varied by 5%. The results
from the Euler-Bernoulli beam model are shown in the second column of Fig. 4.4, while the
corresponding phase-field simulations are presented in the third column.

The results from all models exhibit coherence and agreement, with the crack consistently
favoring the direction of the original microstructure. This behavior aligns with expectations,
as the shear contribution (third and fourth columns of eq. 4.22) is the most significant factor
influencing crack propagation.

Our analysis demonstrates that both simulation techniques accurately represent physical
reality and can be used as predictive tools for modeling fracture in lattice structures.

4.4 Topology optimization of beam lattices
Advanced manufacturing processes now allow the development of products with optimized
properties by modifying their shape or topology. Topology optimization provides a mathe-
matical framework to optimize material structure, i.e., the spatial distribution of material
within a design domain. After defining a cost function, sensitivity analysis provides an
updating scheme for design variables, allowing for the optimization of various parameters
like compliance, stress, and displacement. These optimization problems, modeled as con-
strained partial differential equation design problems, require both optimization solvers and
numerical discretization schemes (usually finite element methods).

In practice, two types of solvers are used: (i) meta-heuristic approaches that rely on
multiple cost function evaluations, and (ii) gradient-based solvers that use the adjoint state
method to compute the derivative of the cost function. Among topology optimization
techniques, the density-based Solid Isotropic Material with Penalization (SIMP) method is
widely used. It defines density variables at each element of the finite element mesh, using
a power law to penalize intermediate densities, resulting in optimized structures with solid
and void regions. The correct choice of penalization parameters is crucial for achieving
optimal results, as explained by Bendsøe and Sigmund [Bendsøe & Sigmund 1999].

One challenge in SIMP is checkerboard patterns, where alternating void and solid el-
ements emerge. This issue can be mitigated using filtering techniques, such as density
filters or sensitivity filters, which help reduce mesh dependency [Bourdin 2001]. Another
class of methods is based on level-set functions [Sethian 1996], which represent void-solid
boundaries and evolve based on shape or topological derivatives to achieve optimized de-
signs [Jackowska-Strumillo et al. 1999].

Recent manufacturing advancements have enabled the design of materials with complex,
small-scale topologies. Multi-scale topology optimization has emerged to handle these de-
signs, combining macro and micro optimization techniques, with microstructures influencing
the overall material behavior. While traditional methods rely on periodic homogenization,

Most studies focusing on the topology optimization of the Cosserat medium use ficti-
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tious material parameters, whereas papers presenting the optimization of lattice structures
calculate only the Cauchy coefficients [Watts et al. 2019]. A comparative analysis using
real microstructures and a homogenized second-order continuum was missing.

Periodic beam lattices were known to behave as the Cosserat continuum when properly
homogenized. Due to the discrete network of the joints, an independent rotation is needed
to properly mimic their behavior. This is confirmed herein by topology optimization.

We presented a new method [Molnár & Blal 2023] to optimize the topology of slender
lattice structures with small local volume fractions. We compared the optimal topology
of discrete Euler-Bernoulli beam lattices to topologies obtained using the Cosserat theory.
The local stiffness was calculated based on real geometrical properties, such as the beam
height or the slenderness. We finally highlighted the importance of the enriched model in
the optimization of lattice structures and presented optimal microstructures for a variety
of macroscopic mechanical problems.

We chose to use the algorithm published by Sigmund [Sigmund 2001] and replaced the
arbitrary design variable with the height of the beams. Among its advantages, the modified
algorithm is easy to implement, robust and converges rapidly. Despite that Bendsøe and
Sigmund [Bendsøe & Sigmund 1999] showed that, for the SIMP method, the cubic penalty
function is physically permissible, we decided to use the constitutive analytic relations.

The overall aim of the topology optimization procedure is to keep the compliance of the
model at a minimum by minimizing the potential energy as a function of the local design
variables:

h = Arg min
h

{
c (h) = 1

2UTKU = 1
2

N∑
e=1

uTe ke (he) ue

}
. (4.25)

This was done by respecting the equilibrium constraint:

KU = F, (4.26)

and the volume constraint:

V (h)
V0

= ρ̂, (4.27)

with lower and upper bounds on the design variables (beam heights):

0 < hmin ≤ he ≤ hmax. (4.28)
In eq. (4.25), c is the total potential energy, U and ue are the vectors of the global

and elementary degrees of freedom (translation, rotation), K and ke are the global and
elementary stiffness matrices, N is the number of finite elements in the design domain and
h is the vector containing the elementary design variables (he). In our case, this is the
height of the beam cross sections. In this paper, we assume rectangular beam sections with
a unitary thickness in the out-of-plane (z) direction. In the equilibrium equation (4.26), F
is the global force vector, V is the total volume of the model, V0 is the volume of the design
domain, and ρ̂ is called the relative density or prescribed volume fraction. The optimality
criterion method [Bendsøe 1995] with a sensitivity filter [Sigmund 1997] was utilized to
update the design variables for a given equilibrium problem.

Fig. 4.5a depicts the geometry of the optimization problem. In this section, a cantilever
geometry of length Lx = 100 and height Ly = 50 was chosen. The concentrated force (F )
applied at the end was set to 10−3. In the continuum model the finite element meshes
were chosen homogeneously. Both translational and rotational degrees of freedom were
constrained on the nodes on the left side.



68 Chapter 4. Architected Materials

Lx

Ly

F

(a) Geometry (c) Optimized continuum

Cauchy continuum

(b) Optimized beam topology
(rectangular grid)

x
y

Cosserat continuum

Figure 4.5: Optimized topology of a cantilever: (a) geometry (L = 100, H = 50), (b)
optimal topology using the beam model for ρ̂ = 0.12 (rmin = 1); (c) Continuum models.

For a beam structure, the volume constraint, defined in eq. (4.27) can be expressed by
summing up all the individual elements and dividing the sum by the overall area of the
design domain:

ρ̂ = V (h)
V0

=

N∑
e=1

hele

LH
, (4.29)

where V0 is the total volume of the design domain, le represents the individual length of
the beams, and he is their height. There are N beams in the structure. In this case, he,
The design variable has a geometrical significance wherefore its bounds can be defined as:

0 < hmin ≤ he ≤ hmax, (4.30)

with hmin as a lower bound responsible for numerical stability (hmin = hmax/5000), and
hmax as an upper bound:

hmax ≤
V0
N∑
i=1

li

. (4.31)

The characteristic quantities, upper bounds, and the correlation between local volume
fraction and beam height are summarized in our recent paper [Molnár & Blal 2023].

Fig. 4.5b shows the optimization results of a rectangular lattice modeled using Euler-
Bernoulli beams, while part (c) using Cauchy continuum with SIMP and Cosserat contin-
uum based on the beam heights as internal variable.
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When employing the Cauchy description, the design variable was penalized using a cubic
function, and the maximum value of the design variable was limited to 0.4, which corre-
sponds to the volume ratio of the rectangular grid RVE when he = lm/5. It can be clearly
seen that Cauchy’s description with the SIMP technique is unable to correctly determine
the optimal topology. However, the Cosserat continuum gives not only qualitatively good
correspondence, but quantitative agreement. The maximum difference between the deflec-
tion values was 2.16%, which was within the precision of the built models. Furthermore,
we observed a tendency to favor thicker beams.

Further study included three microstructures: square, hexagonal, and reinforced hon-
eycomb lattices.

In the square lattice, the homogenized stiffness is orthotropic, meaning the material
properties differ along the two principal beam directions. Because there is no interaction
causing contraction in one direction when extending in another, the Poisson’s ratio is zero.
The study explored how local and global volume fractions impacted the optimal topology
of the lattice, demonstrating that increasing the local volume fraction decreased maximum
deflection. The beam model and the Cosserat model yielded nearly identical topologies,
although they differed significantly from those produced by traditional Cauchy continuum.

For the honeycomb lattice, homogenization results in an isotropic response with a Pois-
son’s ratio between 0.3 and 0.5, depending on slenderness. This structure’s optimal topolo-
gies closely resembled those obtained using the SIMP method. The study examined how
varying the filter width affected the topology and maximum deflection. It found that larger
filter widths increase displacement, but the Cosserat and beam models still agree, except
when filtering is turned off.

In the reinforced honeycomb lattice, a traditional hexagonal structure is strengthened
with a triangular grid, which adds normal rigidity. The homogenized stiffness remains
isotropic with a Poisson’s ratio of around 0.3 to 0.34. Structures with different beam
lengths were created to test the effect of micro-length scales, showing that micro-length did
not significantly affected the optimal topology.

Overall, the study demonstrates that the Cosserat model effectively captures the me-
chanical response and optimal topologies of beam lattice structures. The findings suggest
that depending on the design problem, the optimal lattice structure can be chosen using
Cosserat elasticity.

4.5 Concluding remarks
In this chapter, we explored the mechanical behavior of architected materials, particularly
beam lattices, and their potential for optimizing structural performance. By applying both
beam theory and Cosserat elasticity, we demonstrated how the microstructure significantly
influences material properties such as stiffness, strength, and fracture toughness. The anal-
ysis showed that the Cosserat theory, with its ability to incorporate rotational degrees of
freedom, is a more suitable model for capturing the size effects and complex deformation
behaviors present in lattice structures.

We also addressed the fracture behavior of beam lattices, comparing discrete beam
models with continuum phase-field models. The results revealed that the fracture resis-
tance in beam lattices can be effectively characterized by homogenized toughness values,
which remain relatively stable throughout crack propagation. Furthermore, we developed an
anisotropic phase-field approach to capture directional fracture toughness, showing agree-
ment with beam simulations.

Topology optimization played a key role in the chapter, where we demonstrated that
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using the Cosserat continuum for optimizing lattice structures yields more accurate and
realistic results compared to traditional Cauchy models. The optimized topologies not only
minimized compliance but also reflected the true mechanical behavior of the underlying
microstructure.

Overall, the findings emphasize the importance of using enriched models like Cosserat
elasticity for accurately predicting and optimizing the mechanical performance of archi-
tected materials.



Chapter 5

Conclusion and Perspectives

In this manuscript, I have demonstrated six major results that contribute to a deeper
understanding of fracture mechanics and material behavior. These findings highlight key
advancements in the modeling and analysis of fracture processes, as well as the implica-
tions for designing fracture-resistant materials. The following chapter summarize the most
significant outcomes of this study:

1. We have shown that the material length scales, such as Irwin’s length and the phase-
field length, differ from the lengths that emerge in cases involving complex geometries.

2. We have shown that limiting crack velocities can be correlated to the average stiffness
around the crack tip.

3. We have developed and calibrated complex, densification dependent yield criteria for
sodium silicate glasses.

4. We have shown that diffuse damage establishes the difference between free and fracture
surface energies.

5. We have established that periodic beam lattices have a unique fracture toughness
based on the elementary structure and the materials tensile strength.

6. We have demonstrated that the Cosserat theory is necessary and sufficient to optimize
beam structures.

The work presented in this manuscript delves deeply into the role of length scales in
material failure, using a range of advanced models and methods to better understand frac-
ture mechanics across multiple scales. From atomic-level simulations to continuum-scale
models, the work has illustrated how length scales fundamentally influence crack initiation,
propagation, and the overall mechanical behavior of materials. The findings are particu-
larly relevant in addressing the limitations of classical fracture mechanics, which often fail
to capture the full complexity of material behavior in modern engineered systems.

This research serves as a unifying framework that bridges diverse aspects of fracture
mechanics, linking theoretical constructs, numerical models, and material-specific phenom-
ena. By focusing on the critical role of length scales—from atomic dimensions to macro-
scopic structural features—this study provides a cohesive perspective on material failure
that transcends traditional disciplinary boundaries. The integration of phase-field methods,
atomic-scale simulations, and continuum theories reflects the interconnected nature of frac-
ture processes, offering a holistic view that encompasses both fundamental mechanisms and
practical applications. The common thread throughout these contributions is the emphasis
on understanding and leveraging length scales to resolve the complexities of crack propaga-
tion, energy dissipation, and structural optimization. By uniting distinct approaches under
a shared analytical framework, this work not only advances the theoretical foundations of
fracture mechanics but also lays a pathway for designing resilient materials and structures
tailored to the demands of modern engineering challenges.
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A key contribution of this work is the detailed exploration of phase-field models and their
ability to regularize fracture mechanics problems. By introducing a length scale parameter,
the phase-field approach effectively bridges stress-based and energy-based criteria for failure,
allowing for a more nuanced understanding of crack behavior. The work presented here
goes beyond traditional models by considering dynamic fracture scenarios, as well as multi-
physics interactions, such as oxidation-induced failure. These extensions of the phase-field
method underscore its versatility and potential as a powerful tool in both theoretical studies
and practical applications.

Another significant aspect of this work is the examination of the fracture behavior in
silicate glasses, particularly how composition and external pressure influence the mechanical
properties of these materials. Through atomic-scale simulations, this thesis demonstrated
the critical role of sodium content in modifying the ductility, densification, and fracture
toughness of silicate glasses. These findings are particularly valuable in industries that rely
on glass materials for high-strength applications, as they provide a deeper understanding
of how to tailor glass compositions to improve performance under stress. Additionally, the
research highlights how fracture toughness in these materials is influenced by atomic-level
mechanisms, providing a clear pathway for optimizing their mechanical properties.

The investigation of architected materials, particularly beam lattice structures, further
emphasizes the importance of length scales in determining material behavior. The research
presented shows that traditional Cauchy models are often insufficient to capture the com-
plex deformations and size effects in architected materials. By employing Cosserat elasticity,
this thesis provides a more accurate framework for understanding and optimizing the me-
chanical performance of these structures. The use of topology optimization, in conjunction
with enriched continuum models, demonstrated how architected materials can be designed
to minimize compliance while maintaining robustness. This is a critical insight for the
development of lightweight, high-strength materials in modern engineering applications.

One of the overarching themes of this thesis is the importance of coupling different
theoretical approaches to capture the full complexity of fracture mechanics. By comparing
the phase-field approach with the coupled criterion, the research demonstrates how multiple
fracture modes—tensile, shear, and antiplane—can be accurately modeled to reflect real-
world behaviors. This is especially relevant in the context of dynamic fracture, where
the interaction between crack speed, branching, and material strength poses significant
challenges. The findings show that the introduction of an internal length scale, such as in
the phase-field method, is essential for accurately modeling the transition between stable
and unstable crack propagation.

In conclusion, this work provides a comprehensive investigation into the role of length
scales in material failure, offering new insights and advanced models to better predict and
understand fracture behavior. By integrating theoretical models, numerical simulations,
and atomic-scale analysis, the research has demonstrated the critical role of internal length
scales in governing material performance. These findings have important implications for
the design and optimization of materials in a wide range of engineering applications, from
high-performance glasses to architected lattice structures. Looking forward, the continued
development and refinement of these models, along with their experimental validation, will
be key to advancing the field of fracture mechanics and material’s science.

Perspectives
In this section, we explore various perspectives on the future directions of research in non-
linear fracture mechanics, building on the findings of this study. While significant progress
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has been made, several key areas remain unexplored. Specifically, we have identified three
major directions that warrant deeper exploration: (i) the experimental identification of the
regularization length scale or process zone shape, (ii) the design of novel material archi-
tectures engineered for superior fracture resistance, and (iii) the development of innovative
glass compositions with enhanced fracture resistance.

Experimental observation of lc — The first major challenge lies in the experimental
identification of the regularization length scale or process zone shape, which is critical for
the accurate application of phase-field models in fracture mechanics. While these mod-
els have proven effective in regularizing fracture problems, extending their application to
more complex material systems, such as those with heterogeneous microstructures or multi-
physics interactions, demands further refinement. A key limitation is the current lack of
experimental validation, which is necessary to ensure that these models accurately reflect
real-world fracture behavior.

To address this, future research should prioritize several key approaches. First, com-
puted tomography imaging of echelon cracks in antiplane shear offers a promising method
for directly visualizing complex fracture geometries, providing insights into the regulariza-
tion length scale. This technique allows for the precise observation of the process zone in
challenging fracture scenarios.

Additionally, high-resolution digital image correlation (DIC) can be used to capture
detailed displacement fields around fracture zones. Traditionally, the region near the crack
tip has been excluded from analysis due to deviations in measured displacements from the
singular assumptions of the William’s series. However, by applying non-singular methods,
such as those proposed by Bažant & Beissel [Bažant & Beissel 1994], we can more accurately
fit these displacement fields and gain deeper insights into the shape and extent of the fracture
process zone. Performing this analysis across various geometries would help determine
whether the size and shape of the process zone are intrinsic material properties or influenced
by structural geometry.

Furthermore, integrating these experimental techniques with phase-field simulations
presents a significant opportunity for future advancements. By employing finite element
method updating (FEMU) that incorporates both phase-field models and real-world ex-
perimental data from DIC, we could improve the accuracy of fracture predictions. This
integration allows for continuous refinement of simulations, aligning computational mod-
els more closely with observed experimental behavior, ultimately enhancing the predictive
power of phase-field models in complex material systems.

Creating new, fracture-resistant material architectures — Building on the in-
sights from this study, future work will focus on designing novel material architectures
through the topology optimization of meso- and microstructures. This research holds sig-
nificant industrial potential, particularly in sectors like aerospace, automotive, energy stor-
age, and defense, where the demand for lightweight, fracture-resistant materials is critical.
The development of these advanced materials could lead to considerable weight reductions
without compromising structural integrity, offering substantial benefits in terms of energy
efficiency and sustainability.

To advance the development of fracture-resistant metamaterials, future research
will focus on three key aspects: homogenization, optimization for toughness, and de-
homogenization/rendering (as illustrated in Fig. 5.1). Homogenization will seek to tran-
sition from detailed microstructural models, such as beam lattices, to simplified contin-
uum descriptions that accurately capture essential mechanical properties, including fracture



74 Chapter 5. Conclusion and Perspectives

(b) Optimization (c) Rendering and testing

in
iti

al

op
tim

iz
ed

final structure

(a) Homogenization

Figure 5.1: Schematic illustration of fracture-resistant material designs.

toughness. Advanced methods, such as Cosserat theory and phase-field fracture modeling,
will be employed with the goal of demonstrating that fracture properties can be repre-
sented by a single macroscopic model, independent of the material’s geometry or loading
conditions.

In parallel, optimization for toughness will concentrate on enhancing fracture resistance
through topology optimization. This involves identifying material structures that facilitate
energy dissipation and delay crack propagation by promoting micro-branching, thereby
increasing overall toughness. Future research will also explore advanced statistical methods
and algorithms, such as genetic algorithms [Wang & Tai 2005, Li et al. 2022], to discover
material configurations that maximize resistance across various loading scenarios.

Finally, de-homogenization [Geoffroy-Donders 2018], or rendering, will involve translat-
ing these optimized continuum models back into heterogeneous microstructures suitable
for real-world applications. This step is critical for manufacturing, where attention will be
given to preserving the structural integrity and smoothness of the microstructures to ensure
they accurately reflect the optimized designs. Techniques like convolutional neural networks
[Elingaard et al. 2022] will be explored to achieve precise projections of the microstructures
at the desired scale. These three interconnected aspects will be central to advancing the
practical application of fracture-resistant metamaterials.

A notable example of the need for optimizing material architectures can be found in
silicon-based anodes for lithium-ion batteries. Silicon, while offering high energy density,
becomes increasingly fragile due to repeated stressing at the atomic scale during charge
and discharge cycles. This leads to a progressive mechanical breakdown that compromises
battery performance [Abdelouhab et al. 2024]. As a result, understanding atomic-scale pro-
cesses becomes crucial for addressing mechanical failure in these systems [Saidi et al. 2023].
The design and optimization of the anode structure must account for how silicon deforms
and fractures at this scale, requiring a deeper focus on atomic interactions and stress dis-
tributions. With advances in additive manufacturing, new structural scales can be reached,
enabling precise control over material architecture at both the macro and atomic scales.

Fracture resistant glass compositions — In this study, we have tested various as-
pects of atomic-scale failure in silicate glasses, gaining valuable insights into how these
materials behave under various mechanical conditions. However, the next crucial step is to
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unify these findings into a comprehensive constitutive model that can accurately describe
the failure mechanisms observed experimentally. Developing such a model will enable us
to better understand the intrinsic properties of silicate glasses and their response to differ-
ent macroscopic loading conditions. This, in turn, could pave the way for the creation of
new glass compositions, such as boro-silicate glasses, which are known to exhibit greater
resistance to fracture, particularly under compressive loads. These improved glass materi-
als have multiple applications, including use in chemical processing equipment, laboratory
glassware, and even in advanced optical devices and nuclear waste containment.
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Methods

A.1 Coupled criterion

A.1.1 Working example
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Figure A.1: (a) Geometry of a sample with a rounded notch. (b) Coupled stress and energy
criteria for the sample.

The section focuses on the demonstration, how the coupled criterion can predict crack
initiation, propagation and arrest. The geometry depicted in Fig. A.1a is particular due
to the crack initiating in an unstable way, but after a well-defined distance, it stops. The
sides at Hfix distance are constrained according to a K-field displacement:

ûx = KI
8µπ
√

2πr
[
(2κ− 1) cos θ2 − cos 3θ

2
]
,

ûy = KI
8µπ
√

2πr
[
(2κ+ 1) sin θ

2 − sin 3θ
2
]
,

(A.1)

.
where r and θ are polar coordinates measured from the initial crack tip, µ is the shear
modulus, κ = 3 − 4ν, and ν is Poisson’s ratio. For the bulk sample, the elastic constants
were determined as µ = 31.7 GPa and ν = 0.25 for amorphous silica.

As can be seen, the initial crack radius can be varied, and in the case of this particular
geometry, neither the tensile stress nor the energy release rates are available analytically.
For this reason, the finite element method was used to determine the functions. For the
coupled criterion the stress function was calculated using a mesh densified around the crack
tip. The smallest element size was chosen to be 0.1 Å. The energy release rate was calculated
by a seam crack, and the opposite nodes were gradually separated. Finally, the derivative
of the global potential energy was taken in respect to the crack length, using the finite
difference method as shown in eq. (2.1) and (2.2). Essential to note, that to obtain smooth
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results, the energy difference had to be calculated on the same mesh. The sample was
considered homogeneous and isotropic.

The normalized criteria are presented in Fig. A.1b. The inset illustrates the smallest
length where both stress and energy criteria are satisfied (hollow circle), while the global
figure shows the evolution of the energy release rate as a function of the crack length.

The crack propagated as long as the differential energy criterion is fulfilled. The energy
release rate was not monotonous. In all cases, the energy release rate at ∆a = 0 was zero,
since the Griffith criterion cannot be used if there is no sharp crack at the beginning. After
this, G first increased according to a power law, then after a maximum value, both functions
decreased monotonously. For ∆a = Lx − a0, G became zero as there was no longer any
stored energy in the sample. After the first unstable jump, the energy release rate decreased
monotonously wherefore the propagation became stable.

As a consequence the first instance when both incremental energy release rate and
strength criteria intersects the same point the line at 1 (circle) pinpoints the loading state
when crack initiates. Furthermore, until the moment, the differential energy release rate
remains larger then 1 (square) shows the unstable propagation.

A.1.2 Error estimation
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Figure A.2: (a) Geometry of the benchmark sample for mode I opening in infinite space.
(b) Energy release rate results as a function of mesh size (h) and element type.

In most geometries the stress field converges quickly with the densification of the fi-
nite element mesh. However, due to the moving singularity when calculating the energy
release rates, a convergence analysis is necessary. Therefore, this section is dedicated to a
benchmark example to show how different mesh densities and finite element types affect
the calculation of G.

Basically, A rectangular 2D plane strain geometry was taken with side lengths L. The
crack was positioned in the middle with a length of a0 = L/2. For this case, the analytical
value is available:

G0 =
KI

(
1− ν2)
E

, (A.2)

where KI represents the applied loading, E is Young’s modulus, and ν stands for Poisson’s
ratio. For this simulation ν = 0.3 was considered.
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To calculate the energy release rate exactly at the initial state the crack’s length was
changed in both forward (right) and backwards (left) direction. Thus the numerically
obtained G was calculated from the energy equilibrium:

G = −Ψ (a0 + ∆a)−Ψ (a0 −∆a)
2∆a , (A.3)

with Ψ being the potential energies for a fixed loading and varying crack lengths.
To test the effect of mesh density onG we have varied the element size (h) homogeneously

keeping ∆a = h.
The results for various element sizes and element types are shown in Fig. A.2b. The

presented results clearly indicate that as the element size approaches zero, the computed
energy release rate converges to the exact analytical solution. This behavior is consistent
across all cases, demonstrating that with sufficiently small element sizes, the finite element
method can accurately reproduce the theoretical results.

The convergence behavior for all the element types can be approximated using a second-
order polynomial. This finding suggests that the rate of convergence of the energy release
rate is quadratic with respect to the element size, which is typical for many finite ele-
ment approximations. Such a convergence pattern reinforces the reliability of the employed
method in recovering the analytical solution as the mesh is refined.

It is also evident that using higher-order elements, such as second-order elements, and
the modified singular element [Akin 1994] at the crack tip significantly accelerates the
convergence. This is particularly important in the context of fracture mechanics, where ac-
curately capturing stress intensity factors and the associated energy release rates is crucial.
The ability of these elements to enhance accuracy with fewer degrees of freedom compared
to standard linear elements underscores their potential for efficient numerical simulations.

One notable implication of these findings is that larger elements can be employed in
practical simulations while still achieving an accurate approximation of the analytical so-
lution. By extrapolating from results obtained with larger mesh sizes, it may be possible
to reduce the computational cost associated with fine mesh discretizations, which is par-
ticularly useful in complex or large-scale models where the mesh size becomes a critical
factor.

Additionally, the use of singular elements at critical regions, such as crack tips, shows
promise for future applications. These elements provide a more efficient means of capturing
the localized stress fields and energy release rates without the need for overly refined meshes.
This can greatly benefit simulations in industries where fracture mechanics plays a pivotal
role, such as aerospace, civil engineering, and materials science. By leveraging singular
elements, computational efficiency can be improved without sacrificing accuracy, making
this approach advantageous for large-scale simulations in future research and applications.
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A.2 Atomic scale simulation
To generate the initial samples, the atoms were placed randomly, taking care that the
minimum distance is larger than 1.5 Å. Using NPT ensemble simulations with Berendsen
barostat [Berendsen et al. 1984] and Nosé-Hoover thermostat [Frenkel & Smit 2002], the
systems were first equilibrated at the liquid state of 3000 K and zero pressure (±5 MPa)
for 1.4 picoseconds with a coupling time of one timestep (1 fs) to the thermostat. This
way the initial explosion of the kinetic energy was controlled without particle collisions.
After this short period the coupling time to the thermostat was set to 2 ps. The systems
were then melted for 100 ps at 3000 K. We did not increase further the initial melting
temperature because at higher temperature ranges the repulsive part of the potential func-
tion becomes active which dilutes the results [Vollmayr et al. 1996]. Then the liquids were
quenched with the cooling rate of 10 K/ps (10+13 K/s) down to a final total kinetic energy
(Ekin ∼ 10−4 eV) which corresponded to 10−5 K temperature. Finally the systems were
equilibrated for 100 ps and the total energy of the systems was minimized using Polak-
Ribiere conjugate gradient algorithm to reach static equilibrium. This quenching rate may
seems fast, although it was shown in Ref. [Vollmayr et al. 1996] and also double checked by
this study that neither structural nor density properties change furthermore by decreasing
this parameter [Binder & W. Kob 2005].

A.2.1 Potential function
From several types of empirical potential functions developed to describe sodium
silicate glasses [Tsuneyuki et al. 1989, van Beest et al. 1990, Pedone et al. 2006,
Pedone et al. 2007], we chose to adapt the so-called van Beest, Kramer and van
Santen (BKS) potential [van Beest et al. 1990] which was extensively studied. We used
the parameters set according to the work of Yuan and Cormack [Yuan & Cormack 2001].
The two-body potential function used in this paper can be described as follows:

ΦBKS
αβ (r) =

{
ΦCoul
αβ (r) + ΦBuck

αβ (r) Ψcut (r, rcut, γcut) for r ≥ rrep,
ΦCoul
αβ (r) + ΦRep

αβ (r) for r < rrep,
(A.4)

where

ΦBuck
αβ (r) = Aαβe

−r/ραβ − Cαβ
/
r6, (A.5)

Ψcut (r, rcut, γcut) = e−γ
2
cut/(rcut−r)2

, (A.6)

ΦRep
αβ (r) = Dαβ

/
r12 + rEαβ + Fαβ . (A.7)

In equation (A.4), α and β correspond to the different species (Si, O or Na) and r is the
distance between two atoms. ΦBuck

αβ is the well known Buckingham term, which was set ac-
cording to the parameters (Aαβ , ραβ , Cαβ) of Yuan and Cormack [Yuan & Cormack 2001].

In addition to this description, the Ψcut(r, rcut, γcut = 0.5) cutoff function was added to
the Buckingham potential to ensure that the potential energy and its first derivative (contact
force) goes smoothly to zero at the distance equal to the cutoff (rcut). A stronger very short
range (if r < rrep) repulsive potential (see in equation A.7) was added to the traditional
BKS potential in order to avoid the collapse of atoms at high pressure or temperature as
usually seen [Kerrache et al. 2006, Mantisi et al. 2012]. Dαβ , Eαβ , and Fαβ have been set,
that the potential function and its first and second derivative stays continues. rrep was
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(a) (b)

Figure A.3: (a) Comparison between neutron and X-ray structure factor obtained by exper-
iments [Fábián et al. 2007] (circles) and MD simulation (black line) for x = 30 %mol Na2O.
(b) Top: Total correlation functions calculated from neutron scattering [Fábián et al. 2007]
and MD simulation. Bottom: Difference between MD simulations and experimental mea-
surements from for x = 30 %mol Na2O.

Qn This work Emerson Maekawa Charpentier
Q0 0.04 % 0 % 0 % 0 % 0 %
Q1 0.82 % 0 % 0 % 0 % 0 %
Q2 8.42 % 6 % 2 % 8.33 % 4.17 %
Q3 38.81 % 40 % 48 % 33.33 % 41.76 %
Q4 51.91 % 54 % 50 % 58.34 % 54.17 %

Table A.1: Qn species in sodium silicate containing x = 20 %mol Na2O
with the theoretical bond length rSi−O = 1.7 Å. Experimental data were taken
from Emerson [Emerson et al. 1989], Maekawa [Maekawa et al. 1991] and Charpen-
tier [Charpentier et al. 2004] (with two different methods).

taken as close as possible to r0 (distance, where the potential function has its maximum)
in order to have a repulsive effect at small r values. The classic Coulomb interactions in
equation (A.5) (ΦCoul

αβ = kC
qαqβ
r , where kC is Coulomb’s constant) are calculated using

partial charges (q0 = −1.2, qSi = +2.4 and qNa = +0.6) [Yuan & Cormack 2001].

A.2.2 Structural verification
In Fig. A.3a experimental [Fábián et al. 2007] neutron and X-ray (inset) structure fac-
tors are compared with the simulated ones for 30 % Na2O - 70 % SiO2 sodium
silicate glass. Numerical comparison can be made using a χ2 test: χ2 =∑np
i=1

(
S (qi)MD − S (qi)Experimental

)2
/
np, where S (qi) is the value of the function at

qi and np is the number of qi points. The difference between the two functions are
χ2

Neutron = 2.6 · 10−3 and χ2
X−ray = 2.4 · 10−3, which can be considered relatively low.

Furthermore the peaks of the functions are in corresponding places.
A better interpretation of the scattering results can be made with the total correlation func-
tions (TCF) calculated from the Fourier transform of the structure factors. The calculated
TCF shown in Fig. A.3b displays a very good match with the experimental data of Fábián
et al. [Fábián et al. 2007].

To compare two structures, another standard measurement is the connectivity of the
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silica system (Qn distribution). Therefore, we focused on the number of bridging (BO)
and non-bridging oxygen (NBO) atoms around a silicon to describe the connectivity of
the silica system. This number was calculated by counting BO atoms, whose position to
the central silicon atom was closer than 1.7 Å. This distance is the first local minimum
(1.7 Å) after the first peak (1.6 Å) of the corresponding Si-O pair distribution function.
We considered bridging oxygens if they had two silicon atoms at a distance closer than
1.7 Å. All other oxygens were considered NBOs. The Qn species (n = 4, 3, 2, 1, 0)
are defined as Si atoms having n BO atoms. Table A.1 shows comparison between the
Qn distribution obtained by our simulation and NMR measurements [Emerson et al. 1989,
Maekawa et al. 1991, Charpentier et al. 2004]. 20 % Na2O content was chosen because this
is the composition for which the most experimental measurements exists in literature. Our
results lie within the scatter of the experimental results.

We have shown in this part, that the comparison between the simulation and experi-
mental data is adequate, and is within the accuracy of the most recent experimental mea-
surements.

A.2.3 Error estimation

Figure A.4: Position of the peaks of the histograms of the displacement of the particles
after a forth and back deformation step as a function of strain step size.

The elementary strain steps were chosen to allow the system to respond elastically. In
order to find the largest strain step allowed, the following test was used: the box was de-
formed, relaxed and re-deformed to its original shape, then the displacement of the atoms
were calculated between the original and the new configuration. The remaining displace-
ments were divided by the box length to achieve strain-like unit. The histogram of the
remaining displacements were then fitted by a log-normal distribution function. In Fig. A.4
the position of the histogram peak is plotted as a function of the strain step size (δγxy)
for shear deformation. Until δγxy = 10−4 the average deformation stays elastic, but for
larger steps the remaining displacements increase drastically and enter the plastic regime.
Therefore the largest elementary strain step used was set to 10−4 which is consistent with
previous measurements [Mantisi et al. 2012, Léonforte et al. 2005].
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A.3 Coarse-graining

The technique discussed in this chapter is a weighted Gaussian convolution or the so-
called coarse-graining method [Goldhirsch & Goldenberg 2002]. Its aim is to transform
discrete quantities in space to continuum variables. We can use this method to establish
the correlation between discrete simulations like molecular dynamics or discrete elements,
and a continuum description (e.g., finite element method). Present method should not be
confused with coarse-grained molecular simulations, where stiff atomic configurations (e.g.,
pyran rings) are replaced by a single larger particle.

The algorithm presented here is a generalized version of the code used in references
[Molnár et al. 2016d, Molnár et al. 2017a, Molnár et al. 2018].

The averaging function was chosen as the following form :

φCG (r) = 1
wnπn/2

e−(r/w)2
, (A.8)

where w is the coarse-graining width and n is the number of dimensions. The function is
normalized in order to obtain a unit integral in an infinite domain:∫

Ω

φCG (r)dΩ = 1, (A.9)

with the distance between grid point and particle:

r = ‖ri − r‖ =
√

(x− xi)2 + (y − yi)2 + (z − zi)2
, (A.10)

and x, y and z are the coordinates of the grid point, while xi, yi and zi are the coordinates
of particle i.

A.3.1 Local quantities

To obtain the mass belonging to the grid point the following equation is calculated:

ρCG (r) =
∑
i

miφCG (‖ri − r‖) . (A.11)

Each particle is taken into account with its proper mass and a weight associated with
the particle as a function of its distance to the grid point. This technique can also be used
for stress, energy or other discrete quantities defined on particles.

To calculate the displacements on grid points, the particle displacement is normalized
by its mass/volume. The weighted average is obtained by the following equation:

uCG (r) =

∑
i

uimiφCG (‖ri − r‖)∑
i

miφCG (‖ri − r‖) , (A.12)

where ui is the displacement vector of atom i.
The spatial derivatives of the displacements (strains) can be calculated analytically. The

calculation on the x directional deformation is used to demonstrate the technique:
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εCGx (r) = ∂uCGx
∂x = ∂

∂x

∑
i

ux,imiφCG(‖ri−r‖)∑
i

miφCG(‖ri−r‖)
= ∂

∂x

∑
i

ux,imiφCG(‖ri−r‖)

ρ(r)

=
ρ(r) ∂∂x

[∑
i

ux,imiφCG(‖ri−r‖)

]
−

[∑
i

ux,imiφCG(‖ri−r‖)

]
· ∂ρ(r)
∂x

ρ(r)2

=

∑
i

ux,imi
∂φCG(‖ri−r‖)

∂x

ρ(r) −

[∑
i

ux,imiφCG(‖ri−r‖)

]
· ∂ρ(r)
∂x

ρ(r)·ρ(r)

=

∑
i

ux,imi
∂φCG(‖ri−r‖)

∂x

ρ(r) − uCGx (r) ·

∑
i

mi
∂φCG(‖ri−r‖)

∂x

ρ(r) .

(A.13)

The spatial derivatives of the coarse graining function, can be obtained as:

∂φCG(r)i
∂x = 1

w3π3/2
∂
∂x

[
e−(r2/w2)

]
= 1

w3π3/2 e
−(r2/w2) · ∂∂x

(
− r2

w2

)
= 1

w3π3/2 e
−(r2/w2) ·

(
− 1
w2

)
· ∂∂x (x− xi)2

= 1
w3π3/2 e

−(r2/w2) ·
(
− 1
w2

)
· 2 (x− xi)

= − 2(x−xi)
w5π3/2 e

−(r2/w2).

. (A.14)

A.3.2 Error estimation
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Figure A.5: Mean relative difference in mass density as a function of the grid spacing. The
error bar shows the relative standard deviation.

One of the critical decisions to make before executing the coarse-graining algorithm is
the characteristic distance between grid points. While the w, the coarse-graining length,
should be determined based on the discrete structure, the grid points posses no real phys-
ical meaning. Basically, we only chose the positions, where the continuum quantities are
sampled.

To demonstrate the influence of the grid distance on the obtained results, we have
executed the technique on the middle plane of a large 400 × 300 × 100 Å3 system. The
coarse-graining width was fixed at w = 8 Å, with a cutoff of rcut = 3w.
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First, a relatively small grid distance was chosen, dx = dy = dr = 1 Å, to which the
results of larger grid spacing were compared by first calculating the local density then using
a 2D spline interpolation the grid spacing was densified to 1 Å. The advantage of the former
method is that the interpolation is incredible fast, and if we find the maximum spacing where
no more detail could be collected from the microstructure, renders further densification (e.g.,
calculating the coarse-grained quantities on all atomic positions) pointless and only a wast
of time.

Fig. A.5 displays the average relative difference and its standard deviation as a function
of relative grid spacing. In the figure, it can be seen, that the mean difference between a fine
and a coarse grid is relatively small, which means, that until the analysis has a representative
portion of the sample, the mean value will represent the global quantity relatively well.
However, when considering the local variations, thus the standard deviation of the mass
density difference, we see that if the grid spacing is larger than w a difference is detected
between interpolated and calculated results. As a consequence, we always recommend to
take a grid distance slightly lower than the coarse-graining with and densify the tessellation
using interpolation techniques if it is needed for visualization purposes. However, taking a
too dens grid, is pointless.
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Parallel projects

This chapter presents several projects I worked on in parallel to the main subject of the
manuscript. While these projects have not yet made a direct contribution to understanding
length scales in fracture, they offer valuable insights and may spark new directions for future
research.
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• G. Molnár, D. Rodney, P. Dumont, F. Martoïa, Y. Nishiyama, K. Mazeau, L. Orgéas, Cel-
lulose crystals plastify by localized shear, Proceedings of the National Academy of Sciences
of USA, 115 (28) 7260-7265, 2018.

• A. Saidi, A. Tanguy, M. Fourmeau, G. Molnár, A. Boucherif, D. Machon, Coupling between
mechanical stresses and lithium penetration in a lithium ion battery, Mechanics of Materials,
177, 104532, 2023.

• M. Sepulveda–Maciasa, G. Molnár, A. Tanguy, Thermomechanical Dissipative behaviour of
Metallic Glasses, Journal of Non-Crystalline Solids, 636, 123028, 2024.
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B.1 Elasto-plastic response of cellulose nanofibrils

(a) (b) (c)

Figure B.1: (a) Molecular dynamic simulation of a periodic cellulose crystal with and with-
out dislocations. (b) Finite size atomistic cellulose nanofibril in water. (c) Discrete element
simulation showing a helical perversion (shown by arrows) compared to an experimental
demonstration [Silva et al. 2016].

The project focused on the multi-scale analysis of the elasto-plastic response of cellulose
nanofibrils. The project’s strategy is summarized in Fig. B.1

First, we explored the plastic deformation of cellulose crystals under shear using atom-
istic simulations in a periodic environment to uncover the mechanisms governing their me-
chanical behavior. Cellulose microfibrils, which are essential structural elements in plants
and potential eco-friendly reinforcements in engineered materials, possess complex mechan-
ical properties that are not fully understood, especially their behavior under shear defor-
mation.

We focused on cellulose Iβ, the most common crystalline form in plants, and performed
molecular statics simulations to analyze its response to shear along three different planes.
Our results showed that cellulose crystals exhibit a highly anisotropic elastoplastic behavior
characterized by localized shear bands, which form depending on the direction of the applied
shear. For perfect crystals, we observed that the shear deformation is accompanied by
significant dilatancy, with the cellulose chains undergoing local deformations, translations,
and rotations.

Additionally, we demonstrated that defects, such as dislocations, significantly impact
the mechanical properties of cellulose crystals, reducing both yield strength and dilatancy
in a manner akin to metallic crystals. These findings underscore the importance of both
perfect and defective structures in the plastic deformation of cellulose, providing a basis for
micromechanical modeling of cellulose microfibrils in structural applications. Our research
thus advances the understanding of cellulose crystal mechanics, particularly their plastic-
ity under shear, and lays the groundwork for developing novel materials with enhanced
mechanical properties.

Subsequently, we investigated the behavior of finite-sized cellulose beams (fibrils) under
torsion, bending, and buckling using molecular dynamics simulations. In the final phase,
we conducted a beam-like discrete element [Bergou et al. 2008] analysis of lightly packed
nanofibrillated cellulose suspensions. The discrete element model employed was specifically
designed to simulate thin, flexible rods, efficiently capturing their extension, bending, and
twisting dynamics by explicitly modeling the centerline for tension and bending, while
treating the material frame for twisting quasistatically.
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B.2 Lithium penetration in a silicon-based batteries
In this study we explored the coupling between mechanical stresses and lithium penetra-
tion in silicon-based anodes for lithium-ion batteries using molecular dynamics simulations.
Silicon anodes are a promising alternative to traditional graphite due to their high theoret-
ical capacity, but they face significant challenges from mechanical stresses during lithiation,
leading to rapid degradation.

We focused on understanding how mechanical and electrochemical phenomena interact
during lithiation. We first examined the diffusion of lithium atoms in silicon, revealing that
this process is highly dependent on the crystalline orientation and applied pressure. Notably,
we observed a regime change in lithium diffusion above a certain pressure threshold, where
lithium atoms displayed a ballistic motion along specific crystallographic planes.

To compute the local stress fields generated by lithiation, we used a coarse-graining
method that considers thermal effects. We found that the stress field varies significantly
based on lithium density, temperature, and the crystalline orientation of the free surface.
High pressures induced by lithiation can lead to the amorphization of the silicon support,
a critical factor affecting the stability and durability of the anode.

Our findings highlight the crucial role of mechanical constraints in influencing lithium
diffusion and the associated stress fields, providing new insights into optimizing silicon-
based anodes for longer-lasting, more efficient lithium-ion batteries.

B.3 Heat conductivity of bulk metallic glasses
In our study, we investigated the thermo-mechanical behavior of Zr50Cu50 metallic glass
by employing molecular dynamics simulations to explore how plastic deformation affects
heat generation and dissipation under different conditions. Specifically, we examined the
influence of strain rate, temperature, and sample size on the material’s behavior.

We began by performing simulations on two different samples of Zr50Cu50 metallic glass:
a small sample containing 4800 atoms and a larger sample containing 145200 atoms. Both
samples were subjected to successive cycles of volume-preserving shear deformation across
various strain rates (108, 109, and 1010 1/s) and temperatures (10 K, 100 K, and 300
K). During these simulations, we measured the stress-strain response and monitored the
evolution of temperature to derive thermo-mechanical constitutive laws. The schematic
illustration of the methodology is depicted in Fig. B.2.

Our findings revealed that plastic deformation in metallic glasses serves as a significant
heat source. However, we observed strong finite size effects that impact the formation and
dissipation rate of shear bands, which are localized zones of intense deformation where most
of the heat generation occurs. The small sample displayed markedly different thermome-
chanical behaviors compared to the larger sample, particularly at lower strain rates. This
discrepancy arises because the smaller sample is unable to form large, mature shear bands
effectively, thereby failing to replicate the collective deformation behavior seen in larger
systems.

We also found that the material’s response is highly sensitive to the strain rate. At
higher strain rates, the mechanical behavior of the glass becomes smoother, and we observed
the formation of thermal hysteresis loops, which indicate a persistent temperature change
during each loading-unloading cycle. In contrast, at lower strain rates, the material exhibits
a more chaotic, noisy behavior, characterized by pronounced local plastic events and less
thermal stabilization.

To quantitatively describe this complex behavior, we proposed a thermo-mechanical
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Figure B.2: (a) Comparison between the elastic strain energy and the dissipated plastic
energy densities. The shear modulus values are given by the initial slope in the stress–strain
curve. (b) Shear bands for the large sample at an initial temperature of 100 K and a loading
rate of 1010 1/s. Shear strain is computed from the deviatoric part of the coarse-grained
strain tensor. (c) Comparison between simulated temperature and fit using the thermo-
mechanical constitutive law from plastic dissipation.

constitutive law at the continuum scale. This law accounts for the conversion of plastic work
into heat (the thermo-mechanical coupling effect) and allows us to predict the temperature
evolution of the material based on strain rate, temperature, and finite size effects. Our
model effectively reproduces the observed self-heating phenomena, demonstrating the strong
interplay between thermal and mechanical responses in metallic glasses.

Our study offers new insights into the fundamental thermo-mechanical properties of
Zr50Cu50 metallic glass, highlighting how plastic deformation leads to significant self-
heating, with this behavior being strongly influenced by strain rate, temperature, and
sample size. These findings underscore the importance of considering these factors when
designing applications that utilize metallic glasses, particularly in fields like nanotechnology,
micro-electro-mechanical systems, and biomedical devices, where precise thermal manage-
ment is crucial.

In conclusion, our work provides a deeper understanding of the complex interplay be-
tween mechanical deformation and thermal response in metallic glasses, paving the way
for more accurate modeling and potential optimization of their use in various advanced
technologies.
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The role of length scales in material failure

Abstract: Most materials exhibit markedly different behaviors at the micro-scale
compared to the macro-scale, particularly when it comes to failure. At very small scales,
solids tend to be significantly stronger than at the structural level. This difference is
typically attributed to the presence of defects. While fracture mechanics provides an
adequate framework for describing structural resistance in the presence of large defects,
structures are rarely designed with intentional cracks. Most defects, whether introduced
during manufacturing or as a result of wear over the material’s lifetime, are relatively small
and fall within a transitional scale. At this length scale, neither stress-based analysis nor
traditional fracture mechanics are fully applicable.
The manuscript explores the critical role of length scales in material failure, offering new
insights into the mechanical behavior of solids across different scales. The primary objective
is to bridge the gap between theoretical fracture models and practical applications through
the use of advanced computational techniques such as phase-field methods and atomic-scale
simulations. By integrating multi-scale modeling approaches with experimental analysis,
the study focuses on understanding fracture processes in brittle materials.
The manuscript presents several key findings that advance the understanding of fracture
mechanics and material behavior across multiple scales. It establishes correlations between
fracture toughness and other material properties, such as tensile strength in various frac-
ture modes. It also reveals that material length scales differ from the size of instabilities
observed in complex geometries. Furthermore, the study shows that the limiting velocities
of cracks in dynamic fractures are linked to the average stiffness around the crack tip,
where the finite-sized, regularized stress zone helps align simulations with experimental
observations. The research demonstrates how different length scales in atomic structures
manifest in elasticity, plasticity, and fracture, providing new insights into material behavior.
Additionally, the study introduces failure criteria inspired by atomic-scale processes in
silicate glasses, which are crucial for accurately predicting both their fracture and ductile
responses. The critical role of diffuse damage in differentiating between free surface energy
and fracture surface energy is also emphasized. Finally, the study shows that periodic beam
lattices possess a unique fracture toughness determined by their elementary structure and
tensile strength, while establishing that Cosserat theory is both necessary and sufficient
for optimizing the mechanical performance of these structures.
The implications of these findings are profound, offering new pathways for optimizing
fracture-resistant materials. The research suggests that local toughness can be homoge-
nized. By applying advanced optimization techniques, the global resistance of materials
can be significantly enhanced, paving the way for the development of customized, fracture-
resistant mechanical metamaterials tailored to specific applications.

Keywords: Regularization length, Toughness, Phase-field fracture, Atomic scale
simulations, Silicate glass, Beam lattice



Le rôle des échelles de longueur dans la ruine des matériaux

Résumé: Les matériaux se comportent souvent de manière très différente à l’échelle
microscopique par rapport à l’échelle macroscopique, particulièrement en ce qui concerne
la ruine. À de petites échelles, les solides sont bien plus résistants que lorsqu’ils sont
évalués à l’échelle structurelle. Cette différence est généralement attribuée à la présence
de défauts. Si la mécanique de la rupture offre un cadre adéquat pour comprendre la
résistance en présence de grands défauts, les structures ne sont presque jamais conçues
volontairement avec des fissures. La plupart des défauts, qu’ils résultent de la fabrication
ou de l’usure au fil du temps, sont relativement petits et se trouvent dans une échelle de
longueur transitoire où ni l’analyse des contraintes ni la mécanique classique de la rupture
ne s’appliquent pleinement.
Le manuscrit explore l’importance des échelles de longueur dans la ruine des matériaux et
offre de nouvelles perspectives sur le comportement mécanique des solides. Il cherche à
combler l’écart entre les modèles théoriques de rupture et leurs applications pratiques en
s’appuyant sur des techniques de calcul avancées comme les méthodes de champ de phase
et les simulations atomiques. L’approche intègre modélisation multi-échelles et analyses
expérimentales pour mieux comprendre la rupture dans les matériaux fragiles.
Le manuscrit présente plusieurs résultats clés sur la mécanique de la rupture et le
comportement des matériaux à différentes échelles. Il montre des corrélations entre la
ténacité à la rupture et des propriétés telles que la résistance à la traction dans divers
modes de fracture. Il révèle que les échelles de longueur des matériaux diffèrent des tailles
d’instabilités observées dans des géométries complexes. De plus, il met en évidence que
les vitesses limites des fissures dynamiques sont liées à la rigidité moyenne autour de la
pointe de la fissure, où la zone de contrainte régularisée permet d’aligner simulations et
observations expérimentales. La recherche montre également comment les échelles de
longueur atomiques influencent l’élasticité, la plasticité et la rupture, offrant ainsi de
nouvelles perspectives sur le comportement des matériaux. L’étude développe des critères
de ruine basés sur les processus atomiques dans les verres de silicate, essentiels pour
prévoir avec précision leurs comportements en rupture et en plasticité. Le rôle crucial
des endommagements diffus dans la distinction entre l’énergie de surface libre et l’énergie
de surface de rupture est également souligné. Enfin, l’étude démontre que les réseaux
périodiques de poutres possèdent une ténacité unique, déterminée par leur structure
élémentaire et leur résistance à la traction, et prouve que la théorie de Cosserat est à la
fois nécessaire et suffisante pour optimiser les performances mécaniques de ces structures.
Ces résultats offrent de nombreuses perspectives pour l’optimisation de matériaux résis-
tants à la rupture. Ils suggèrent que la ténacité locale peut être homogénéisée. Grâce
à des techniques avancées d’optimisation, la résistance globale des matériaux peut être
augmentée, permettant ainsi le développement de métamatériaux mécaniques sur mesure,
adaptés à des applications spécifiques.

Mots-clés: Longueur de régularisation, Ténacité, Rupture par champ de phase,
Simulations atomiques, Verre de silicate, Treillis de poutres
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