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This paper presents a novel method based on the Cosserat theory to optimize the topology of metama-
terials made of slender beams. First, we filled the gap in the literature and compared the optimal topology
of discrete Euler–Bernoulli beam lattices with counterparts obtained using the homogenized Cosserat
theory. We investigated the effect of material and numerical parameters on the optimization results
and the global stiffness. Finally, the paper highlights the importance of second-order models for slender
lattice structures through different macroscopic geometries. For the first time, we presented an excellent
quantitative agreement between continuum Cosserat and discrete beam results. We demonstrated that
the Cosserat theory is necessary and sufficient to optimize slender, lightweight designs with lattice-
based microstructures. Furthermore, the results showed that the locally allowed volume fraction was
the most critical limiting parameter when maximizing global stiffness. Finally, we found that the rein-
forced honeycomb lattice is the stiffest microstructure for a given mass among the investigated forms.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Historically, when creating structures with large spans (e.g.,
bridges, roofs, or towers), lattice and truss elements were used to
reduce the total mass and increase the global stiffness. However,
early in history, structural engineers realized that by increasing
the space between bent components, the added tensile and com-
pression forces would increase the bending inertia quadratically
with the distance (Huygens–Steiner theorem). As a consequence,
the additional bending momentum would magnify not only the
stiffness but also the global stability of the structures. This way,
structures can span considerable distances that are not accessible
to solid forms.

A similar phenomenon is seen in nature. A structural hierarchy
is found when observing the microstructure of diverse load-
bearing components. Examples range from cork [17], through
many Diatom species [31], honeycombs [45], and the trabecular
bone [36,51]. In all cases, smaller beam-like elements form an
intricate network based on the characteristic loads.

In recent years, with the advancements in additive manufactur-
ing, metamaterials with custom-made microstructures have been
prepared [6]. In addition to an increased stiffness, this small-
scale procedure makes the load-bearing elements stronger. More-
over, as the material approaches its microscopic length scale, the
manufacturing defects’ size and effect are reduced. As a result,
macroscopically brittle materials might behave in a ductile manner
[74,8], thereby giving rise not only to a lightweight and stiff mate-
rial but also a resistant one.

Thanks to the advanced manufacturing processes, developing
new products with specific optimized properties is possible by
modifying their shape or topology. Topology optimization provides
a suitable mathematical framework to optimize the material distri-
bution, i.e., the spatial distribution of the material in a design
domain. After defining a cost function to be minimized, the sensi-
tivity analysis provides an updating scheme for the design vari-
ables. The cost function can be defined for various quantities of
interest (compliance, maximal stress, target shape, displacements,
etc.). Topology optimization problems can be considered con-
strained as Partial Differential Equation (PDE) design problems,
requiring a combination of optimization solvers and numerical dis-
cretization schemes to solve the PDEs physical equations (mainly
the finite element method). Two types of optimization solvers
can be used: (i) meta-heuristic approaches needing only a back
run call of different cost function computations [20] and (ii)
gradient-based solvers where the derivative of the cost function
is required. Gradient-based topology optimization is usually based
on the adjoint state method.

The literature cites several approaches for topology optimiza-
tion. Density-based techniques pioneered by the standard Solid
Isotropic Material with Penalization (SIMP) method [10,12] have
proven their efficiency in structural topology design for a broad
range of applications. SIMP considers density variables defined at
each element of the finite element discretization as the optimized
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topology’s design parameters (design variables). The main idea is
to consider the elastic behavior at each element designated by a
power law introducing a density variable that has a value between
0 (no material) and 1 (material) and a power law parameter (larger
than 1) aiming to penalize intermediate densities. Consequently,
when the penalization parameter is adequately chosen, the spatial
material distribution leads to an optimized structure with only two
material types: void regions (elements with no stiffness) and solid
regions (elements whose stiffnesses equal the bulk behavior).
Empirically, the penalization parameters are taken to be greater
than 3. However, the works of Bendsøe and Sigmund [11] propose
a rigorous methodology for their calibration.

One other important issue when using such approaches is the
checkerboard pathology. It is due to the apparition of neighboring
elements with alternating void and solid materials. This problem
can be addressed with the use of filter solutions. Usually, one can
employ density filters to impose limitations on the density varia-
tion by a fixed length scale in the stiffness distribution. Another
option is to introduce sensitivity filtering so that the design sensi-
tivity is maintained in a fixed neighborhood. Filtering techniques
are efficient for limiting mesh-dependency in density-based topol-
ogy optimization solvers [13].

The other class of topology optimization is based on the level-
set function as a parametrization of the design domain topology
[57,48]. The level-set function represents the boundaries between
void and solid phases, and the spatial evolution of the void-solid
interfaces is usually governed by a shape derivative [60] or a topo-
logical derivative [30] to find the gradient direction toward the
optimized topology. In recent years, numerous investigations have
been proposed for level-set-based topology optimization
approaches [4,3,68,46].

Thanks to the recent advent of manufacturing technologies, the
design of advanced materials, incorporating small scales with com-
plex topologies, has become possible. However, simulations for
structural optimization describing the finest scales are computa-
tionally expensive. Therefore, multi-scale topology optimization
techniques have emerged as a macro-to-micro optimization tech-
nique with noteworthy performances. The optimized structure
results from the macro topology design as the optimized represen-
tation of ascribed microstructures (which can be spatially varying).
Such two-scale optimization bridges the underlying scales with
less expansive effort while capturing relevant microstructural
effects. However, the optimization process considers the
microstructure effect exclusively by its effective (homogenized)
behavior. Various previous studies have investigated the potential
macro–micro design optimization [38,32,29,72,66,27,56,71,64,43],
and most of the corresponding papers are based on scale separa-
tion assumptions and periodic homogenization theory. In order
to accelerate multi-scale processes, approaches merging data-
driven techniques have recently been developed to accelerate
multi-scale topology optimization solvers [22,67,34,73,21]. Fur-
thermore, machine-learning and surrogate-based optimization
techniques [7] could be extended to the topology optimization of
materials with underlying microstructures.

The main explorations deal with the framework of the Cauchy
theory, and the methods are thus suitable for large-scale transi-
tions but limited to exhibiting the microstructure size effects.
Moreover, such first-order frameworks fail when the scale separa-
tion assumption does not prevail (e.g., when topology cells are
kinematically coupled as in some compliant mechanisms).
Enriched kinematic homogenization schemes are needed to
efficiently design architected materials and capture local
microstructural effects, mutual interactions, non-localities, or
instabilities.

One of the first higher-order theories was proposed by the Cos-
serat brothers [19]. They enriched the simple Cauchy model with
2

an independent rotation field gradient. This way, the model had
three displacement and three rotational degrees of freedom (in
2D: two displacements DoFs and one rotation DoF). This theory
was the first to define couple stresses and to render the Cauchy
stress tensor non-symmetric. Since its first introduction, Toupin
[63] formulated the energy density function using the classic dis-
placement and rotation gradient terms. Finally, Mindlin [44] gave
the linearized mathematical theory, serving as the basis of the vari-
ational solution.

Since its first introduction, the Cosserat theory has been used in
numerous fields, such as granular materials [40], masonry struc-
tures [1], composites [35], or even human bone [37,47]. However,
most importantly, it was shown that Cosserat elasticity efficiently
captures the effect of the intrinsic length scale in cellular structures
[54]. The constitutive equations of the model can be written in sev-
eral forms ranging from a single added constant to Hooke’s law [2]
to the entirely redefined stiffness matrix [70]. However, one of the
main disadvantages of the Cosserat theory is that it has too many
material parameters.

Bottom-up homogenization methods are usually applied to
determine the elastic Cosserat constants of lattice structures.
Two main approaches exist: (i) the micro-scale is represented by
an inhomogeneous Cauchy continuum [26,23,25,24], and (ii) the
lattices are modeled with either Euler–Bernoulli [49,55,50] or
Timoshenko–Ehrenfest beams [41]. The important difference is
that in the latter case, the rotational degrees of freedom are already
present at the microscale. On the other hand, with beam theory,
the solid volume fraction cannot be represented. This paper
focuses on analytical results obtained using the asymptotic
method on Euler–Bernoulli beams [49,55], and the limitations of
the model are discussed.

In recent years, various studies have been devoted to obtaining
the optimal topology with a characteristic length scale by using the
Cosserat theory. Most works have focused on fictitious materials
with only a few elastic constants. Parameter studies have been
conducted to investigate the effect of the intrinsic length
[28,53,42,5,39], the fundamental eigenfrequencies [14,61,62], the
Cosserat shear modulus [18], and even 3D non-
centrosymmetricity [65]. A majority of the investigations were
based on the use of the SIMP and the level-set methods to obtain
the results.

Among the various models proposed in the literature, second
gradient elasticity (such as a Cosserat medium) and micromorphic
[69,52] computational homogenization methods seem to be ade-
quate tools to be integrated into topology optimization simula-
tions. Indeed, encouraging recent results for bottom-up multi-
scale modeling of microstructural materials with enriched kine-
matics revive their use in design optimization. However, this topic
remains an open research field [15].

Most studies focusing on the topology optimization of the Cos-
serat medium use fictitious material parameters, whereas papers
presenting the optimization of lattice structures calculate only
the Cauchy coefficients [67]. A comparative analysis using real
microstructures and a homogenized second-order continuum has
yet to be performed.

Certain periodic beam lattices were shown to behave as the
Cosserat continuum when properly homogenized. Due to the dis-
crete network of the joints, an independent rotation can be
defined. This is confirmed herein by topology optimization. In this
paper, we present a new method to optimize the topology of slen-
der lattice structures with small local volume fractions. We com-
pare the optimal topology of discrete Euler–Bernoulli beam
lattices to topologies obtained using the Cosserat theory. The local
stiffness is calculated based on real geometrical properties, such as
the beam height or the slenderness. We finally highlight the
importance of the enriched model in the optimization of lattice



Fig. 1. Basic structure of the topology optimization algorithm.
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structures and present optimal microstructures for a variety of
macroscopic mechanical problems.

The paper is structured as follows. First, Section 2 introduces
the basic concept of topology optimization, after which Section 3
lays out the different mechanical descriptions. Subsequently, Sec-
tion 4 discusses the effect of both numerical and lattice parameters
on the optimal topology. This is followed by a discussion on the
optimal microstructure in Section 5. Finally, Section 6 concludes
the paper.

2. Topology optimization

Topology optimization is a design method in which the material
is distributed inhomogeneously in the design domain to maximize
a specific property. We chose to use the algorithm published by
Sigmund [59] and replaced the arbitrary design variable with the
height of the beams. Among its advantages, the modified algorithm
is easy to implement, robust and converges rapidly. Despite that
Bendsøe and Sigmund [11] showed that, for the SIMP method,
the cubic penalty function is physically permissible, we decided
to use the constitutive analytic relations. Based on the Bernoulli
beam theory, the Cosserat stiffness constants used in this paper
were deduced from asymptotic approaches [49,55]. In addition,
constraints on the maximum height and volume ratios are dis-
cussed in Section 3.

The overall aim of the topology optimization procedure is to
keep the compliance of the model at a minimum by minimizing
the potential energy as a function of the local design variables:

h ¼ Argmin
h

c hð Þ ¼ 1
2
UTKU ¼ 1

2

XN
e¼1

uT
eke heð Þue

( )
: ð1Þ

This was done by respecting the equilibrium constraint:

KU ¼ F; ð2Þ
and the volume constraint:

V hð Þ
V0

¼ f ; ð3Þ

with lower and upper bounds on the design variables (beam
heights):

0 < hmin 6 he 6 hmax: ð4Þ
In Eq. (1), c is the total potential energy, U and ue are the vectors

of the global and elementary degrees of freedom (translation, rota-
tion), K and ke are the global and elementary stiffness matrices, N
is the number of finite elements in the design domain and h is the
vector containing the elementary design variables (he). In our case,
this is the height of the beam cross sections. In this paper, we
assume rectangular beam sections with a unitary thickness in the
out-of-plane (z) direction. In the equilibrium Eq. (2), F is the global
force vector, V is the total volume of the model, V0 is the volume of
the design domain, and f is called the relative density or prescribed
volume fraction.

The optimization problem is formulated based on the algorithm
proposed by Sigmund [59]. Apart from that work, the penalty
exponent was replaced by the exact stiffness as a function of the
beam height (the design variable); as in lattice structures, this vari-
able comes with a physical meaning. The optimality criteria
method [9] with a sensitivity filter [58] was utilized to update
the design variables for a given equilibrium problem.

As shown in Fig. 1, we kept the original structure of Ref. [59].
However, we replaced each block with our own features. As the
paper discusses different mechanical descriptions (Cauchy, Cos-
serat, Euler–Bernoulli beam) for the same mechanical problem,
these blocks vary accordingly.
3

First, the finite element model was generated, after which the
first equilibrium was obtained. The analytic solutions were applied
to calculate the stiffness, energy, and sensitivity functions. For the
Cosserat medium, the results of references [49,55] were utilized.
Finally, the filter was applied directly to the array containing the
sensitivity functions, as initially done by Sigmund [59] where
rmin was the effective filter distance. Next, the design variables
were updated iteratively to satisfy the volume constraint. Finally,
the convergence was verified: if the maximum change in the
design variable was smaller than hmax � hminð Þ=1000, the algorithm
was stopped. Otherwise, a new equilibrium was determined with
the new design variable distribution. A maximum number of 200
iterations were allowed by default. However, the objective func-
tion was monitored continuously. The optimization procedure con-
tinued if the change in potential energy had not converged.
3. Mechanical description

This section briefly summarizes the basic mechanical descrip-
tions used in the paper. All simulations assumed a static equilib-
rium, wherefore each model was governed by a set of equations
describing equilibrium, the kinetic constraints, and the material
model.
3.1. Cauchy continuum

In continuum mechanics, probably one of the most frequently
used assumptions is proposed by Cauchy [16]. The equilibrium of
the differential object is depicted in Fig. 2a) and and can be
described with the following set of equations:

r � rþ b ¼ 0 in X;

r � n ¼ �t on CN ;

u ¼ �u on CD;

ð5Þ

where r is the stress tensor, and b represents body forces (in our
case, zero). The second and third rows describe, respectively Neu-



Fig. 2. Equilibrium and admissible deformations of the elementary volume of the (a) Cauchy, (b) Euler–Bernoulli beam, and (c) Cosserat theories.
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mann and Dirichlet boundary conditions. The bar symbol represents
external forces (�t), and prescribed displacements (�u).

The material is considered to be linear elastic:

r ¼ Ce; ð6Þ
where C is the stiffness matrix and e the strain tensor. Due to the
local equilibrium (rxy ¼ ryx ¼ sxy) the Voight notation can be used,
thus simplifying the stress tensor to a vector with 3 components in

2D: r ¼ rx ry sxy½ �T . Consequently, C becomes a 3� 3 matrix.
The strain tensor is also simplified to the three elementary deforma-
tions shown in Fig. 2(a). Assuming small deformations, the displace-
ment–strain relationship can be expressed as:

ex ¼ @ux

@x
; ey ¼ @uy

@y
; cxy ¼

@ux

@y
þ @uy

@x
: ð7Þ

To solve the mechanical problem, the following energy is min-
imized with respect to the degrees of freedom by following the
kinematically admissible set given in Eq. (5)3. In this first case,
the displacements are obtained by solving the following minimiza-
tion problem:

u ¼ Arginf
u

Z
X

1
2
eTCe� b � udX�

Z
C

�t � udC
� �

: ð8Þ
3.2. Euler–Bernoulli model

To model slender beam structures, the Euler–Bernoulli beam
theory provides the most approachable framework. The classical
beam theory is adapted to describe the behavior of elongated
load-bearing elements with one side significantly larger than the
others. The three primary assumptions that have to be made are
that (i) the plane sections remain plane, (ii) the plane sections
are perpendicular to the neutral axis, and (iii) the deformed beam
angles are small. Thus, the equilibrium shown in Fig. 2(b) can be
described by the following equations:

d2M
dt2

þ pn ¼ 0;
dN
dt þ pt ¼ 0:

ð9Þ

Here, M and N represent the bending moment and the normal
force, and pn and pt are distributed loads perpendicular and parallel
to the neutral axis. These equations are completed with Neumann
and Dirichlet boundary conditions similar to that of Eq. (5)2,3. The
Euler–Bernoulli beam theory neglects the effect of shear deforma-
tion, and as a result, it is adapted to describe the response of slen-
der beams. The linear elastic response can be obtained by:
4

M ¼ EIjt ;

N ¼ EAet ;
ð10Þ

where jt and et are the two types of deformations present beams
can be subjected to: (i) curvature/bending and (ii) elongation/com-
pression. E is Young’s modulus, I is the bending moment of inertia
around axis z, and A is the area of the cross-section.

To obtain the relationship between the degrees of freedom and
the deformations, the following assumptions are used:

jt ¼ @/
@t

¼ @2un

@t2
; et ¼ @ut

@t
; ð11Þ

where / is the rotation, un is the perpendicular displacement, and ut

is the parallel displacement in relation to the neutral axis.
To obtain equilibrium, the following energy functional is mini-

mized by following the kinematically admissible set:

u;/ð Þ ¼ Arginf
u;/

Z
L

1
2
e2t EAþ j2

t EI
� �

dL� p � udL� �t � u� �M � /
� �

:

ð12Þ
The bar symbol represents external forces (�t), and moments

( �M).

3.3. Cosserat continuum

The classical description of continuummechanics is ill-suited to
characterize the response of materials with an inhomogeneous
microstructure, i.e., a characteristic microscopic length scale. How-
ever, the mechanical behavior of architected materials (e.g., lattice
structures) is often determined by their specific micro-scale config-
urations. Therefore, the Cosserat theory (or micropolar elasticity)
incorporates rotational degrees of freedom (/) into the mechanical
description.

The Cauchy model is completed with an additional set of equa-
tions describing momentum equilibrium, as shown in Fig. 2(c):

r � rþ b ¼ 0 in X;

r � lþ r�̂ ¼ 0 in X;

r � n ¼ �t on CN;

l � n ¼ M on CN;

u ¼ �u on CD;

/ ¼ �/ on CD:

ð13Þ
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In this equation, r is now a non-symmetric (rxy – ryx) force-
stress tensor, l is the moment or couple-stress tensor, and �̂ is
the Levi–Civita symbol. The bar symbol represents external forces
(�t), moments ( �M), prescribed displacements (�u), and rotations (�/).

The literature [25] recounts various ways to define linear elastic
behavior. In this paper, we chose to correlate the complete stress
tensor to the deformation components using the following model:

rx

ry

sxy ¼ rxyþryx

2

#xy ¼ rxy�ryx

2

lx

ly

2
6666666664

3
7777777775
¼

C½ �3�3 0 0
0 Gc 0
0 0 D½ �2�2

2
64

3
75

ex
ey
cxy
xxy

jx

jy

2
666666664

3
777777775
: ð14Þ

As a result, the first three elements of the stress vector corre-
spond to the Cauchy stress components, the fourth element pro-
vides the difference between rxy and ryx, and finally, the last
components are the couple stresses.

The corresponding deformations are depicted in Fig. 2(c), with
the missing kinematic constraints described by the following:

xxy ¼ @ux

@y
� @uy

@x
� 2/; jx ¼ @/x

@x
; jy ¼

@/y

@y
: ð15Þ

The equilibrium is then obtained by minimizing the following
functional equations:

u;/ð Þ ¼ Arginf
u;/

Z
X

1
2

eTCeþx2
xyGc þ jTDj

h i
� b � udX�

Z
C

�t � uþ �m � /dC
� �

:

ð16Þ
By incorporating rotational degrees of freedom into the contin-

uum description, the Cosserat theory proposes an analogous
description to the discrete beam model with a significantly lower
computational cost.

4. Numerical examples

Fig. 3(a) depicts the geometry of the optimization problem. In
this section, a cantilever geometry of length (L) 100 and height
(H) 50 was chosen. The concentrated force (F) applied at the end
was 10�3 unless otherwise specified. In the first two subsections,
the continuum meshes were chosen identically. Therefore, the
effect of the concentrated load on the results was negligible. When
comparing different mesh sizes, the concentrated force was
replaced by boundary traction. This paper presents the model
and the results in dimensionless quantities. Young’s modulus
was set to 1. Both translational and rotational degrees of freedom
were constrained on the nodes on the left side.

For a beam structure, the volume constraint, defined in Eq. (3)
can be expressed by summing up all the individual elements and
dividing the sum by the overall area of the design domain:
Fig. 3. Optimized topology of a cantilever: (a) geometry (L ¼ 100;H ¼ 50), (b) op
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f ¼ V hð Þ
V0

¼

XN
e¼1

hele

LH
; ð17Þ

where V0 is the total volume of the design domain, le represents the
individual length of the beams, and he is their height. There are N
beams in the structure. In this case, he, The design variable has a
geometrical significance wherefore its bounds can be defined as:

0 < hmin 6 he 6 hmax; ð18Þ

with hmin as a lower bound responsible for numerical stability
(hmin ¼ hmax=5000), and hmax as an upper bound:

hmax 6
V0XN
i¼1

li

: ð19Þ

The characteristic quantities, upper bounds, and the correlation
between local volume fraction and beam height are summarized in
Table 1.

When using hmax, the RVE should be considered solid (f RVE ¼ 1).
This limit is unsuitable for beam theory, and consequently, in the
following examples, hmax is set to le=5, at which value the Euler–
Bernoulli beam theory still gives a fairly precise outcome (the dif-
ference to the Timoshenko–Ehrenfest theory is 3.06%).

Part (b) of Fig. 3 shows the optimization results of a rectangular
lattice modeled using the Cauchy continuum (with SIMP) and
Euler–Bernoulli beams. When employing the Cauchy description,
the design variable was penalized using a cubic function, and the
maximum value of the design variable was limited to 0.4, which
corresponds to the volume ratio of the rectangular grid RVE when
he ¼ lm=5. It can be clearly seen that Cauchy’s description with the
SIMP technique is unable to correctly determine the optimal
topology.

In the present paper, we discuss three microstructures: square,
hexagonal, and reinforced honeycomb lattices. The reason for this
is that the analytic Cosserat stiffness components for these struc-
tures are available in the literature [49,55]. Tables 2 and 3 summa-
rize each constant of the matrices C;D, and the component Gc. The
remaining components of the matrices were zero.

The aim of Section 4 is to prove that the Cosserat medium is
necessary and sufficient to optimize the topology of light and slen-
der beam lattices. Therefore, each material and numerical parame-
ter was tested using the Euler–Bernoulli beam and the Cosserat
theory, after which the optimal topology and the final displace-
ment (uF

y) measured at the concentrated force F were compared.
It should be noted that the objective function (potential energy)
was equal to c ¼ FuF

y=2, and the potential energy was thus not an
independent measure of optimality.
timal topology using the Cauchy and the beam model for f ¼ 0:12 (rmin ¼ 1).



Table 1
Lattice geometries and correlation between volume ratio and beam height.

Lattice type lx ly
P

le VRVE h f RVEð Þ f RVE hð Þ f RVE le=h ¼ 5ð Þ
Rectangular lm lm 2lm l2m

lmf RVE
2

2h
lm

0.4

Honeycomb
ffiffiffi
3

p
lm 3lm 6lm 3

ffiffiffi
3

p
l2m

ffiffi
3

p
2 lmf RVE

2hffiffi
3

p
lm

2
5
ffiffi
3

p ¼ 0:23

Reinforced honeycomb
ffiffiffi
3

p
lm 3lm lm 6þ 6

ffiffiffi
3

p� �
3

ffiffiffi
3

p
l2m

ffiffi
3

p
lmf RVE

2þ2
ffiffi
3

p h
lm

2þ2
ffiffi
3

pffiffi
3

p 2þ2
ffiffi
3

p
5
ffiffi
3

p ¼ 0:63
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4.1. Square lattice

The homogenized stiffness of a rectangular grid lattice is ortho-
tropic. The two principal orientations are parallel to the two main
beam directions. Due to the lack of normal interaction, C12 ¼ 0,
which means that extension in one direction causes no contraction
in the other. This property signifies that the homogenized mate-
rial’s Poisson’s ratio is zero (m ¼ 0). The rectangular beam lattice
was used to demonstrate the effect of the volume fractions on
the optimal topology. We distinguish between local f RVE and global
f values, where f RVE represents the allowed maximum local volume
fraction, while f is the global volume fraction defined in Eq. (17).
These two quantities are independent, with f 6 f RVE, and f RVE is
mostly controlled by prescribing a lower beam height in the model
based on the correlation shown in Table 1. Due to the difference in
local geometry, various lattice structures have different f RVE for the
same le=he ratio.

The beam model was constructed from 300� 150 RVEs. The
beam segments were unified, which resulted in 90 450 beam finite
elements with lm ¼ 1=3. The load was applied on a node situated
on the bottom line furthest to the right. The Cosserat model was
divided into 300� 150 4-node quadrilateral elements. We used
45000 elements to capture similar topology details as in the beam
model. The advantage of the Cosserat model is that lm reduces to a
material parameter, and the element size does not affect it. The
material and the boundary conditions can be found in the main
part of Section 4. A filter of rmin ¼ 1 was used in both cases.
Table 2
Cosserat constants for the rectangular beam lattice [55].

Lattice type C11;C22 C12;C21 C33 Gc D11;D22

Rectangular

ht
lm
E 0 th3

2l3m
E th3

2l3m
E th3

12lm
E

Table 3
Cosserat constants for honeycomb and reinforced honeycomb beam lattices [49]. C11 ¼ C2

Lattice type Ks

Honeycomb

ffiffi
3

p
6

Eth
lm

Reinforced honeycomb

3þ
ffiffi
3

p
6

Eth
lm

t2h6
3 þ4

3

6

The first two rows of Fig. 4(a) and (b) show the optimal topol-
ogy for two global volume fractions obtained using a beam model
(left) and the Cosserat continuum (right). The third row portrays
the change if thicker beams are allowed. The results displayed in
the two columns are almost identical. However, they differed sig-
nificantly from the outcome obtained using the Cauchy continuum
and the SIMP technique shown in Fig. 3(b).

Similar to the topologies, the displacement results were also in
good correspondence. Fig. 4(c) shows the effect of the local slen-
derness. The maximum difference between the deflection values
was 2.16%, which was within the precision of the built models. Fur-
thermore, we observed a tendency to favor thicker beams. When
f RVE increased, the maximum deflection decreased. Without a glo-
bal stability analysis, the optimal topology favors thinner elements
with higher local volume fractions. When hmax was reduced, the
size of the global elements grew, raising the moment of inertia
but lowering the leverage–resulting in a less rigid structure. This
effect was demonstrated but not discussed by Watts [67], where
the optimal topology was fairly independent of the chosen struc-
ture, and local maxima gave mostly solid parts (with f RVE ¼ 1). Of
course, this solution defeats the purpose of creating an architected
material.

Finally, Fig. 4(d) presents a plot of the deflection results as a
function of the global volume fraction with hmax ¼ lm=5
(f RVE ¼ 0:4). The results were fitted perfectly using a hyperbolic
function. Moreover, the maximum difference was 3.8%, which
demonstrated how well the Cosserat theory reproduced the
mechanical response of these periodic beam structures.

4.2. Honeycomb lattice

In contrast, the homogenization of honeycomb lattices gives an
isotropic response with a Poison’s ratio depending on the slender-
ness varying between 0.3–0.5 (for le=he ¼ 5, it is 0.46). Therefore, as
shown in Fig. 5, the optimal topologies are much closer to the
results produced by SIMP. This section thus describes the use of
the honeycomb structure to demonstrate the effect of the filter
width (r_min on the topology and the maximum deflection at the
concentrated force as a measure of optimality.
2 ¼ Ks þ Gs ;C12 ¼ C21 ¼ Ks � Gs ;C33 ¼ Gs .
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Fig. 4. Topology and deflection results on a rectangular grid as a function of local and global volume fractions.

Fig. 5. Topology and deflection results on a honeycomb structure as a function of the filter width.
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The beam model was constructed from 300� 87 RVEs. The
beam segments were unified, which resulted in 156 387 beam
finite elements with lm ¼ 0:192. The load was applied on a node
situated on the bottom line furthest to the right. The Cosserat
model was divided into 300� 150 4-node quadrilateral elements
(45000 elements), similar to the rectangular case. The material
and the boundary conditions can be found in the main part of Sec-
tion 4. The filter width was varied throughout the analysis.

Fig. 5(a) and (b) show the results obtained using Euler–Ber-
noulli beams and the Cosserat continuum, respectively. An agree-
ment was observed, highlighting the Cosserat theory’s versatile
potential. When the filtering was switched off, the two theories
started to deviate, as shown in Fig. 5(d). However, it is our opinion
that these results bear little practical importance.

Finally,weplotted themaximumdeflection in Fig. 5(c). Introduc-
ing the filter reduced the optimality and the overall stiffness of the
structure. By increasing the filter width, the displacement increased
linearly. However, when rminwas smaller than the shortest distance
between the beam elements, the filter could no longer complete its
task, and the results started to fluctuate. Until that point, the maxi-
mum difference between the two methods was 1.51%.
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4.3. Reinforced honeycomb lattice

Our third example focuses on the effect of the characteristic
micro length scale on the reinforced honeycomb network. In this
case, the classic hexagonal structure was fortified with a triangular
grid. While the hexagonal structure was mostly a bending-
dominated lattice, triangular cells provided normal rigidity. The
homogenized Cauchy stiffness was isotropic with a Poisson’s ratio
varying between 0.3–0.34 (for le=he ¼ 5, it is 0.325).

Different beam structures were created to test the effect of the
micro-length. However, only whole RVEs were used to create the
beam models. Due to the irrational size of the RVE, not many con-
figurations had precisely the same size. Therefore, the following
sample sizes were considered: 142� 41;239� 69;284� 82;336
and 426� 123, which corresponded to lm ¼ 0:4, 0.24, 0.2, 0.17
and 0.14, respectively.

The advantage of the Cosserat model is that there is no need to
change the mesh for a different lm value, as it is only a material
parameter. However, both models were tested with a mesh follow-
ing the change of lm and one independent constant of 300� 150
elements.
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The finite element mesh was generated from 4 node quadrilat-
eral elements. The material and the Dirichlet boundary conditions
can be found in the main part of Section 4. A filter of rmin ¼ 1 was
used in both cases.

After initial testing, the results showed that the concentrated
force and the changing mesh had more significant effects on the
deflection than lm. Therefore, a model was developed to distribute
the loading on a unit length. Practically, the force was divided and
applied on the beam and the continuum model, as shown in Fig. 6.

Fig. 6(a) and (b) show that neither lm nor the Neumann bound-
ary affected the optimal topology. Both the beam and Cosserat
models gave a solid-like outer shell (with f RVE) and a less filled
interior. Fig. 6(c) displays the deflection results as a function of
lm. Its effect was found to be much smaller than the increased
deflection originating from the singularity. When the load was dis-
tributed, a small increase in rigidity was observed in favor of larger
motifs.
5. Discussion

In Section 4, we demonstrated that the Cosserat description was
sufficient not only qualitatively but also quantitatively to describe
the mechanical behavior of beam lattice structures. Moreover, the
response, as well as the optimal topologies, was found to be in
agreement. Due to the overall reduction in element number, the
calculations were significantly accelerated using the continuum
model. The calculations were executed on a personal computer
with a 2.7 GHz Intel Core i7 processor using a single core. On aver-
age, the optimization process took 4-8 h for the beam models and
1 h for the continuum simulations.

Here, we take a step back to understand the critical components
of the Cosserat description, ultimately investigating different
structures (design domains) with varying L=H ratios to identify
an ”ideal” microstructure.

Fig. 7 shows the optimization problem introduced in Section 4.
The elementary grid is a rectangular lattice with 300� 150 RVEs,
Fig. 6. Topology and deflection results on a reinforced honeycomb structure as a function
for the empty ones, the load was distributed on a unit length.

Fig. 7. Different approximations of the rectangular grid with the global volume ratio of f
(b) Cauchy model with a maximum of f RVE ¼ 0:4 and a cubic penalty; (c) Cauchy model wi
The rigidity was calculated based on Tables 2 and 3. The maximum displacement for the
in Fig. 3).
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and the global volume fraction was set to f ¼ 0:12 with an
rmin ¼ 1 filter width. The results were compared with those of
the beam model shown in Fig. 3(b).

Fig. 7(a) presents the optimal topology using the SIMP method
with a m ¼ 0 material and a cubic penalty. In this first case, no limit
was applied to the local volume ratio (f RVE ¼ 1), and as a result, the
final topology differed significantly from the results obtained as
compared to the beam lattice. Furthermore, the deflection was
much smaller because of the higher local volume ratio. As a result,
the SIMP method with an isotropic material was inadequate to
model slender lattice structures. In part (b) the maximum stiffness
was calculated with f RVE ¼ 0:4 based on Tables 1 and 2. To scale
between empty and solid states, a cubic penalty was applied. This
modification was the first step when the form started to resemble
the results obtained with the beam model. The global form was
recovered, however, the details remained dissimilar. Part (c) por-
trays the results when the penalty was omitted, and the stiffness
was calculated based on 2. The details started to emerge, however,
the deflection values overestimated the beam results (uF

y ¼ 2:5) by
7.2%. Finally, part (d) presents the optimal topology obtained using
the Cosserat theory. The details were fully recovered with a 1.2%
difference in the deflation value.

The introduction of the rotational degree of freedom and the
Cosserat theory clearly helped recover the finer details and the pre-
cise mechanical response of the underlying beam structures. Com-
pared to the classical continuum, the finite element
implementation of the theory was not much more complicated.
The only difficulty lies in determining the Cosserat constants for
arbitrary beam structures. However, this can be done using various
homogenization methods [26,33,41]. The Cosserat optimization
code used in this paper is included in Supplementary Materials.

The aspect ratio of the design space was varied to compare the
three lattice structures. We were interested in determining
whether an optimal microstructure could be found as a function
of the geometry. According to Fig. 4(c), the locally allowed maxi-
mum volume fraction had a significant effect on the deflection
of lm . The results for the concentrated force are shown with solid symbols, whereas

¼ 0:12: (a) isotropic Cauchy model with a maximum of f RVE ¼ 1 and a cubic penalty;
th a maximum of f RVE ¼ 0:4 based on the beam heights; (d) full Cosserat description.
reference beam model at the concentrated load was uF

y ¼ �2:50 (see topology result



Fig. 8. Maximum displacement as a function of the design space’s aspect ratio for a global volume ratio of f ¼ 0:075 and lm ¼ 1=3: (a) with f RVE ¼ 0:23 for all lattice
geometries; (b) with their maximum volume ratios by respecting le=he P 5.
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results. Therefore, in Fig. 8(a), we first compared results using the
same local filling ratio, f RVE ¼ 0:23. Interestingly, there was a com-
petition between the honeycomb and the rectangular grid. How-
ever, the reinforced honeycomb was consistently more rigid.
When the local volume fraction of the rectangular grid was
increased to 0.4, it became superior to the honeycomb, even in
the initial interval. The results obtained using the Cosserat theory
repeatedly corresponded well to the beam models. It could thus
be stated that, depending on the design problem, the optimal
RVE can be appropriately chosen using Cosserat elasticity.

6. Conclusion

This paper presents a topology optimization algorithm based on
the Cosserat theory. The continuum results were compared and
verified using Euler–Bernoulli beam models, and the stiffness of
the enriched medium was determined from analytic calculations.
We have carried out a systematic comparison between discreet
beam and continuum simulations to validate the results of the lat-
ter method. This study fills the missing gap in the literature to
show how continuum theory can be used in the optimization of
architected materials.

We observed an excellent quantitative correspondence
between continuum Cosserat and discrete beam results. We
showed that the Cosserat theory was necessary and sufficient to
optimize slender, lightweight designs with beam microstructures,
and that the maximum local volume ratio (thus the maximum
beam height) significantly affected the optimal deflection values.
The effect of the filter width and the local length scale were also
tested.

The addition of the rotational degree of freedom allowed us to
capture the equivalent behavior of the beam theory. The advantage
of the Cosserat model is that lm reduces to a material parameter;
wherefore, the element size does not affect the microstructure.
Consequently, the calculations can be significantly accelerated
compared to beam models.

While the finite element implementation of the Cosserat theory
is relatively simple, the stiffness components are available analyt-
ically only for a few periodic microstructures. Consequently, devel-
oping and publishing a universal homogenization algorithm is
crucial in order to establish a database with various lattice struc-
tures used in practice. Furthermore, the algorithm should be
employed to optimize the beam heights and, for example, the
microscopic length scale.

Data availability

The code and data used in the paper is publish as a supplemen-
tary file.
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