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A B S T R A C T   

In recent years the phase-field method and the coupled energy and stress-based criterion have attracted much 
attention due to their adaptability in modeling fractures. Both approaches have been successfully used to de-
termine crack initiation and have compared well with real-life experiments. The phase-field method diffuses the 
crack surface into the volume of the solid, thus making the solution viable through variational techniques. The 
diffusion is controlled by an internal length scale, which is primarily considered to be a numerical aid without 
any real physical meaning. In this paper, we question the consideration that the internal length is only a nu-
merical parameter, and assess its mechanical significance with the help of the coupled criterion. Through ela-
borate benchmark examples, the correlation between the two methods is demonstrated based on the critical 
loading, the crack topology, and the crack arrest length. We reveal that independently of the chosen aspect, the 
phase-field approach and the coupled criterion present excellent correspondence. We show that the correlation 
between tensile strength and length scale is unique for the standard phase-field formulation. Interestingly, we 
find that both stress and energy criteria are satisfied in the phase-field fracture, and this is explained by de-
monstrating the alteration in global energy release rate due to the regularization introduced by the smeared 
model.   

1. Introduction 

Fracture is one of the most feared failure modes in engineering as it 
manifests almost immediately and has devastating consequences. 
Cracks can appear at several spatial and temporal scales and in a variety 
of materials. The principals are similar in electronic, mechanical, or 
structural engineering problems as well as in seismology or bio-
mechanics. Therefore, fracture is a common issue. However, a universal 
approach is still missing. 

Phase-field fracture models have become more and more popular in 
recent years due to their adaptability and ease of use. These models can 
initiate, propagate, arrest, or even branch cracks with a unique for-
mulation without any particular criterion. The principal idea for all 
diffuse models is that they approximate the discontinuity by a smeared 
damage field. In most of the models, a single length scale (lc) is in-
troduced, which controls the magnitude of the damage penetration into 
the solid. When lc is reduced to 0, the original Griffith theory is re-
covered. Therefore, in most of the literature, the length scale parameter 
is considered a sacrifice, distorting the mechanical behavior but making 

fracture problems accessible to variational approaches. 
The first theory to describe fracture propagation was proposed by 

Griffith [38,37]. He assumed that an already existing crack could grow 
if the released potential energy was sufficient to create the necessary 
fracture surfaces. According to this description, the toughness of the 
material can be described by a critical surface energy. This early work is 
based on the description of the elastic stress field around the crack tip 
that assumes traction free boundaries along the crack surfaces, resulting 
in a stress singularity at the crack tip. In reality, no material can support 
a singular stress field. Therefore, the concept of the process zone (PZ) 
was introduced in the late 1950s. This regularization alters both the 
stress field and the global energy release upon crack propagation. 
Various numerical methods take the fracture process zone into account 
in different ways. 

Smeared approaches, such as the thick level set (TLS) [68] or the 
gradient damage models [12,67] propose a potential alternative. Da-
mage models use an internal length scale to diffuse the crack into the 
volume of the solid. In the TLS, the fracture topology is calculated based 
on geometrical considerations, while in the phase-field approach, an 
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additional gradient flow equation is solved. 
Both methods are based on the original Griffith [38,37] solution. 

This stationary approach was updated by Francfort and Marigo [29], 
who reformulated the local energy criterion to a global minimization 
problem. Though the idea was simple, this was the first step towards a 
variational formulation of fracture problems. Nevertheless, a con-
undrum persisted because the fracture was described using a surface 
domain in the volume. The solution was finally proposed by Bourdin 
et al. [12] motivated by the Mumford and Shah [71] functional, which 
is the limit case of the Ambrosio and Tortorelli [4] elliptic regulariza-
tion function. Essentially, the crack density function was introduced by 
Miehe et al. [67] with an internal length scale (lc), describing the 
transition towards the limiting case represented by a Griffith-like 
fracture. Since its introduction, the method has gained incredible po-
pularity. Many modifications have been proposed to represent plasticity  
[3,27], dynamic effects [11], fatigue [55,64], interfacial damages [73], 
hydrogen assisted cracking [62] or even hydraulic fractures  
[95,99,105]. 

Initially, lc was introduced to facilitate the solution using numerical 
methods and to prevent any mesh dependence of the crack path. Pham 
and Marigo [77,78] theorized that this parameter should be identified 
separately as it represents the material’s internal length [30,76,80]. 
Recently several works calibrated lc to capture the maximum loading at 
failure to experiment [75,92,46]. Nguyen et al. [74,72] even identified 
the extent of the micro-damaged region around a discrete crack using 
micro-computed tomography. First Zhang et al. [104], then Tanné et al.  
[92] and most recently Kumar et al. [46], Kumar and Lopez-Pamies  
[47] demonstrated that the variational formulation can establish the 
connection between stress and toughness based criteria. Phase-field 
methods can regularize the infinite critical load at infinitesimal crack 
lengths defined by the Griffith criterion. Reproducing a size effect ob-
served a long time ago in experiments [8,43,16]. These groundbreaking 
papers successfully confirmed that lc is necessary to calculate the cri-
tical load in the presence of cracks properly, however they used the 
homogeneous solution mainly to correlate lc to the materials intrinsic 
strength only [31,56,10,77,78,6,76,11,63,75,79,1,92]. Their work was 
not extended to explain the transition and eventually the size effect 
using a simple mechanical theory. 

This paper aims for a nuanced and deepened understanding of the 
elementary mechanism introduced by the phase-field approximation. 
We draw a comparison between the variational approach and the so- 
called coupled criterion [49]. The latter was one of the first theories to 
give an elegant and straightforward explanation of the well-known size 
effect. Therefore, we consider this analogy essential because, according 
to the authors’ best knowledge, this mechanism in phase-field simula-
tions has never been fully explained. 

Finite fracture mechanics, and particularly the coupled energy- and 
stress-based criterion proposed by Leguillon [49], allows the prediction 
of crack initiation in various materials and configurations. The theory 
postulates that both criteria are necessary conditions to calculate the 
critical load, but neither one is sufficient on its own. It has been suc-
cessfully employed for the failure of ceramics [60,50], composites  
[59,21,33], notched specimens [51,18] and bi-material interfaces  
[58,89,23]. A detailed review of the applications can be found in the 
work of Weißgraeber et al. [93]. More recent works include its exten-
sion to 3D cases [32,101,22,24], nonlinear materials [52,84,53,25], 3D- 
printed polymers [100], fatigue limit prediction [54] or its coupling to 
the peridynamics approach [103]. 

When satisfying both criteria, a length emerges, which might be a 
related quantity to the length scale used in diffuse damage approaches. 
The coupled criterion has already been successfully compared to other 
methods, such as the CZM [81,41,34,61,19,17,20], and the TLS [102] 
approach. Generally, the papers conclude that the qualitative correla-
tion is good if the characteristic lengths of the geometry (specimen size, 
initial crack length, crack tip radius) are much larger than the size of 
the PZ. However, the results start to deviate if these quantities are of the 

same magnitude. Both methods are capable of determining critical 
loading states, which can be calibrated to reproduce the experimental 
results. Furthermore, Doitrand et al. [20] showed that not only the 
traction-separation limit but also the function’s profile has a significant 
effect on the results, especially concerning crack initiation. In conclu-
sion, even if these authors compared the two methods, a universal ex-
planation for the size effect introduced by the regularization length is 
still missing in phase-field methods. 

We aim to deepen the comparison and to assess the similarities in 
the phase-field method between the critical loads, crack topology, and 
arrest length in unstable-stable crack initiation cases. This analysis will 
provide an insight to explain the effect of the length scale parameter on 
the mechanical behavior of the materials. 

The present paper is structured as follows. Section 2 introduces the 
two principal methods - the phase-field damage model and the coupled 
criterion - used to study brittle fracture. After a summary of the theo-
retical background, a failure envelope based on the homogeneous 
phase-field solution is introduced, and the main results are outlined in 
Section 3. In each case, the obtained correlation between the tensile 
strength and the length scale parameter is highlighted. Section 4 is 
dedicated to assessing the differences between the coupled criterion 
and the diffuse damage models. Finally, Section 5 concludes the paper. 

2. Methods 

This section introduces the two methods used to model brittle 
fracture in the present work. First, the phase-field approach is outlined 
after which the foundations of the coupled criterion are presented. 
Thanks to the rich literature on both methods, we here only give a short 
overview, which is essential in order to understand their comparison, 
but we will not enter into details. 

2.1. Phase-field approach for brittle fracture 

The phase-field approach utilized to model a fracture is based on the 
diffuse representation of the localized discontinuity. The crack surface 
is approximated with a damage variable (d) ranging from 0 to 1. If the 
phase-field is 0, the domain is undamaged, while if its value reaches 1, 
the crack is emerged, and the material lost all of its resistance and 
stiffness. Various phase-field models can be found in literature [2,97]. 
The principal differences lay in the so-called geometric crack function 
and the elastic energy degradation function. One of the earliest and 
most widely used approach assumes that the damage enters the equa-
tion of the crack surface density in a quadratic manner [13,67]: 

= = = +W d g d g d d d
g
l

d l d d( ) ( ) ( , )
2

[ | | ]c c
c

c
c

2 2 2
(1) 

where is the overall crack surface, and gc is the critical energy release 
rate defined by Griffith. The sharp discontinuity is replaced by a 
smeared representation of the surfaces by the integration of , the crack 
surface density, which is calculated using the length scale parameter lc, 
which eventually controls the size of the regularization zone. 

This representation has many advantages, therefore it is possibly 
one of the most commonly used. The solution algorithm can be coded in 
a standard finite element solver, when lc goes to 0, the fracture surface 
converges to the theoretical Griffith limit, and the natural bonds of the 
damage ( <d0 1) is automatically satisfied. One of its major flaws is 
that due to the quadratic setting it does not have an initial elastic 
threshold. Some authors tried to correct this flaw by adding an initial 
elastic threshold [65,70,98], however in all of the cases the crack sur-
face calculated from the damage topology overestimates the theoretical 
value by more than 20%, which makes this method somewhat unreli-
able. On the other hand Pham et al. [76] proposed a description with 
the damage variable entering the surface only with a linear term. With 
this crack function the stress remains elastic until fracture, however 
without special treatment the natural lower bond of the damage 
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variable is violated ( <d 0). Thus, the solution of the problem requires a 
bonded non-linear optimization algorithm, which is hardly im-
plemented in most of the commercial finite element codes, such as 
Abaqus. Wu [97] proposed a mixture of the two worlds, which renders 
a CZM like representation, however in their case, the strength is an 
explicit material parameter, thus independent of the length scale. 
Therefore, this formulation is inappropriate for this study. As a con-
clusion, even if the quantitative comparison would change with the 
chosen phase-field formulation, the main findings of this paper would 
remain qualitatively the same. For a general overview of the available 
phase-field formulations we refer to the work of Ambati et al. [2]. 

The damage variable and the strain energy density ( ) are con-
nected through the degradation function: 

= ++d g d( , ) ( ) ( ) ( ).0 0 (2)  

The elastic strain energy ( 0) is split into positive (extension) and 
negative (compression) components based on the principal strains ( i) 
and the trace of the strain tensor: 

= ++
+ +µ tr( )

2
( ) ,

i
i0

,
,

2
,

2

(3) 

where and µ are the Lamé parameters. To distinguish between 
compression and extension, positive and negative part functions are 
used. Eq. (2) indicates that if the material is in tension, the tensile 
stiffness and the elastic stress are reduced with the damage variable. 
Present implementation uses the well-known quadratic degradation 
function: =g d d( ) (1 )2. 

The solution for the displacements (u) and the phase-field (d) pro-
blem is obtained by minimizing the following energy functional in a 
staggered manner: 

= + +d W d T du( , ) ( ) ( ) ,extintL (4) 

with the internal and external strain energies defined as follows: 

= +
= +

+d g d d
dV dA

u u u
u t u

( , ) [ ( ) ( ( )) ( ( ))] ,
· · .ext

int
0 0

(5) 

where and t are external volumetric and boundary forces. 
The monolithic solution of the fully coupled problem suffers from 

convergence issues, therefore Miehe et al. [66] decoupled the two so-
lutions by introducing a history field (H ). In one iteration step, the 
damage and H are kept constant for the mechanical and the phase-field 
problem, respectively: 

=+ { }d dV dAu u u t uArg inf [ ( , ) ¯· ] ¯· ,n
u

1 (6)  

= ++ { }d g d d d dVArg inf [ ( , ) (1 ) ] ,n
d c1

2H
(7) 

with the history variable chosen as: 

=

=+

+
0,

max .n
n

0

1
0

H

H
H (8)  

This formation satisfies the Karush–Kuhn–Tucker conditions [88]. 
Unfortunately, there is no detailed mathematical proof that the in-

troduction of the history variable enforces damage irreversibly, there-
fore we explicitly enforced d 0 in the displacement element. 
However, we have not observed that this criterion was violated more 
than the numerical precision during our simulations. Though there are 
other methods to obtain a positive damage rate (e.g., bound constrained 
non-linear optimization techniques [6,28,97], augmented Lagrangian  
[57,94] or penalization methods [35]), due to its simplicity the history 
field of Miehe et al. [66] is the most frequently used [98]. More details 
about the Abaqus implementation can be found in our previous papers  
[69,70]. 

To demonstrate how the damage variable affects the stress response, 
the homogeneous solution is calculated by neglecting the gradient of 
the damage variable ( d). The maximum tensile stress is plotted in  
Fig. 1(a) as a function of the applied tensile strain for a unidirectional 
extension case. The horizontal displacement is fixed, and the top side is 
moved upwards. Fig. 1(b) shows the evolution of the damage as a 
function of the applied deformation. 

The tensile strength ( c) of a material is defined as the maximum 
amount of tensile stress ( max) that it can withstand before failure. 
When the gradient is neglected the homogeneous solution for the ten-
sile strength can be obtained from the material parameters by the fol-
lowing equations: =c Cg

l
27
256

c
c

in unidirectional extension, where 

= +C E (1 )
(1 )(1 2 ) in which E is Young’s modulus and is Poisson’s ratio. 

The relationship can be generalized: 

=
Eg
l

, · ,c c

c

max 2

1 (9) 

where the function takes the effect of the stress state and the effect of 
Poisson’s ratio into account. Fig. 1(c) shows the evolution of the max-
imum stress in the space of the principal stresses for the 2D case. 

Details of the homogeneous solution are given in Appendix A with a 
MATLAB algorithm in the Supplementary Materials to calculate the 
tensile strength for a given material. When E g, , c and lc are known, the 
strength can be determined. In the opposite case, when searching for an 
applicable l ,c c can be measured experimentally, and the algorithm can 
be used to determine a regularization length for the phase-field simu-
lation. 

One of the earliest attempt to quantify a length scale in fracture was 
proposed by Irwin [42]. We call lmat the materials intrinsic length1: 

=l
Eg

.mat
c

c
2 (10)  

The correlation between the length scale used in phase-field fracture 
and lmat is given by the function : 

=l l· .c mat
2 (11)  

This relationship was shown for unidirectional tension by Tanné 
et al. [92], however no correlation was given between these internal 
lengths and the actual size of the process zone. Therefore, the question 
remains open still today if there is a general correlation between these 
intrinsic quantities – deduced based on the strength and the toughness – 
and the length of the crack upon initiation. 

2.2. Coupled stress and energy criterion 

The coupled criterion is an elegant tool used in finite fracture me-
chanics. This approach combines an energy condition with a stress- 
based comparison. For a crack to propagate, both criteria have to be 
satisfied at the same increment length. The energy release rate (G) is 
determined through a balance between the states before and after the 
crack jump. In most cases, the phononic dissipation is neglected, and 
quasi-static conditions are assumed. In order to calculate the energy 
release rate, two options are thus presented. 

The first is called the incremental value, where G is considered 
constant during the initiation and propagation: 

+ = + +G a a P a a P a P F u
a

g, ( , ) ( , ) ( , ) ,inc
int int ext

c0
0 0

(12) 

1 E is usually replaced by an equivalent stiffness to account for different 
loading cases. In this paper we consider that lmat is only the ratio of the three 
material constants above and the stress state is accounted for via . This allows 
us to precisely distinguish between lc and lmat . 
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where Ginc is the incremental energy release rate, is the elastic strain 
energy, and P represents the applied displacements (u) or external 
forces (F) on the boundaries. It reverts to the Griffith definition of the 
energy release rate when the incremental crack length tends towards 

a 0. Here, a0 is the initial crack length, and a is the unknown 
crack increment. 

The second approach assumes that the energy release rate varies 
during the propagation. Consequently, G can be derived as: 

+

= +

+ +

G a a P

a a P
a

a a P a P F u
a

g

/2,

( /2, )

( , ) ( , ) ( , ) .
int int ext

c

0

0

0 0
(13)  

In practice, the incremental approach is used when there is no initial 
crack (e.g., only a V-notch exists), and the initiation is considered in-
stantaneous [49]. The second, on the other hand, is more suitable if 
there is already a sharp crack present. Usually, the second criterion 
gives a lower propagation length and initiates at a smaller loading. 
However, when a 0, the incremental value converges to the dif-
ferential G. In this paper, we present an analysis of the results from both 
descriptions. 

The second requirement of the propagation is given by the stress 
criterion. We assume that the elastic stress around the crack tip along 
the expected crack path (described by its curvilinear abscissa s) is 
higher than the material’s tensile strength: 

+a s P s a( , ) , 0 ,t c (14)  

Here, t is the stress perpendicular to the crack’s opening direction 
(tangential). Usually, for a tensile case, in homogeneous and isotropic 
materials, this is equivalent to the first principal stress. 

Interestingly for the stable initiation, both energy and stress func-
tions decrease monotonously with the advancement of the crack. 
Therefore, the energy release rate determines the initiation state. For an 
unstable initiation, on the other hand, the energy criterion is defined by 
an increasing function, and the stress criterion by a decreasing one. 

As a result, the energy criterion provides a minimum crack length, 
and thus a lower bond, from which the condition is satisfied. However, 
due to the singularity at the tip, the stress criterion will provide a 
maximum distance, thus an upper bond for the admissible initiation 
crack length. 

In order to satisfy both criteria simultaneously, the load is increased 
so that the initiation length provided by the energy criterion decreases 
until it matches its value given by the distance along the crack path on 

which the stress criterion is satisfied. A main conclusion of the coupled 
criterion is thus that a finite crack length a is abruptly created at in-
itiation so as to satisfy both the strength and energy requirements. 
Consequently, the coupled criterion allows us to determine the loading 
Pc when the crack initiates: 

= + +P min P a min G a a P
g

a a P, , ( , ) , ( , ) 1 ,c
c c

0 0

(15) 

as well as the admissible initiation lengths ac: 

= + +a a min G a a P
g

a a P, ( , ) , ( , ) 1 .c
c

c

c

c

0 0

(16)  

In practice, the energy release rate and the stress fields can both be 
obtained analytically or by using the finite element method. Under the 
assumption of small deformations and in a linear elastic framework, 
only one linear elastic calculation is needed to compute the stress 
condition, whereas computing the energy criterion requires some linear 
elastic calculations with varying crack length. 

3. Results 

Progressively, through benchmark examples, the similarities, the 
differences, and the correlation between tensile strength and length 
scale are highlighted. In the case of the simple extension (mode I) 
discussed in Section 3.1, the energy release rate, the stress fields, and 
the crack path are all available analytically. For a shear fracture pre-
sented in Section 3.2, on the other hand, only parts of the necessary 
fields are known. To determine the initiation angle, we mapped the 
region around the crack tip to determine the energy release rate using 
the finite element method. Finally, in our last example shown in Section  
3.3, a finite-size specimen was studied with particular attention to the 
initiation and arrest lengths. 

In all cases, the material was considered isotropic and homogeneous 
with the material constants shown in Table 1. The tensile strength ( c) 
and length scale (lc) parameters were varied. 

The cracks were represented both physically and with prescribed 

Fig. 1. Homogeneous solution of the phase-field problem in unidirectional tension: (a) stress–strain curve; (b) damage as a function of the applied deformation; (c) 
failure envelope (maximum stress states) in the space of principal stresses. The stress path in the case of part (a) is depicted using a dashed line. The results were 
obtained with =E 3 GPa, = =g0.37, 300c J/m2 and =l 0.2c mm. 

Table 1 
Material constants used in the calculations.    

Material constant  

Young’s modulus (E) 3 GPa 
Poisson’s ratio ( ) 0.37 
Critical energy release rate (gc) 300 J/m2 
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phase-field values. In case of the examples presented in Sections 3.1 and 
3.3, due to the symmetry, only one quarter and one half of the geometry 
was modeled respectively. Thus, the connecting symmetry line was 
constrained in the parallel direction, while the crack faces were left free 
to displace. In case of the shear example (presented in Section 3.2) the 
nodes were doubled to physically represent the initial fracture. This was 
reported [90] to be essential because of the energy decomposition ap-
plied (see Eq. 2). In both cases Dirichlet boundary conditions were 
prescribed on the crack faces in the phase-field ( =d 1) which re-
presented an already nucleated crack [45,86,92]. 

3.1. Mode I tensile opening in an infinite plane 

Coupled criterion. Griffith [38] first proposed the energy-based 
criterion to study a single straight crack in an infinite homogeneous 
plane subjected to uniform tensile stress applied in the plane at the 
outer edge. To compare analytical results with the phase-field solution, 
we chose a “thick” plate, that is to say plane strain conditions. 

The schematic illustration of the problem is depicted in Fig. 2(a). 
For the coupled criterion the stress can be calculated on the Ox( ) axis 
( =y 0) measured from the crack tip with the following equation [91]: 

=
+
+

x
x a

x x a
( )

( )
( 2 )

,y
y
0

0

0 (17) 

where a0 is the initial crack length and y
0 is the tensile stress acting on 

the solid body at infinity. 
From this equation, we can measure the distance from the crack tip, 

where the stress exceeds the tensile strength: 

=a a 1
1 ( / )

1 .
y c

0 0 2
(18)  

Using similar algebraic manipulations, the admissible crack incre-
ment defined by Griffith’s energy criterion [37] can be expressed. The 
criterion is written as a stability condition: 

=d
da

S( ) 0, (19) 

where is the additional elastic strain energy induced by the crack: 

= + +a a
µ

( )
8

( 1)( ) ,y
0

2
0 2

(20) 

and S is the fracture energy consumed by the creation of the crack: 

= +S g a a2 ( ).c 0 (21)  

In Eq. (20), µ is the shear modulus and = 3 4 for the plane 
strain case. Eq. (19) can be rewritten as: 

= + + =G a a
µ

g( )
8

( 1)( ) ,y c
0 0 2

(22) 

from which criterion the critical crack increment can be expressed as: 

=
+

a
g µ

a
8

( 1) ( )
.G c

y
0 2 0

(23)  

The obtained result can be reformulated to determine the maximum 
loading stress as a function of an already existing crack (a0): 

=
+

g µ
a

8
( 1)y

G c0,

0 (24)  

This stress value can be considered as an upper bond for the critical 
loading. 

If we assume that the crack can propagate only until the point where 
the stress exceeds the strength, and can only be opened if there is en-
ough potential energy released, the critical applied stress can be defined 
( =a aG) as follows: 

=
+ +

=
+ +

+

2

1 1

1 ,y
c

c

c
a

g µ

c
0,

4 (1 )
16

1
2

1
4

4

c
c

y
G

2
0
2 2

2 2 0,
(25)  

It is worth noting that the critical load is a function of not only the 
strength and the fracture toughness but the geometry (initial crack 
length) as well. Thus, with the above equation, a size effect can also be 
captured, which will be discussed later. 

To demonstrate the evolution of the two criteria, the normalized 
values are depicted in Fig. 3. It can be seen that initially, at low loading 
values, a (crosses) is much smaller than aG (circles). However, the 
gradual increment of y

0 brings the two values closer until they match. 
This length ( a) is considered the initiation of the crack. 

=G
g

1.0.
c

y

c (26)  

In our case, this only happens if y y
c0 0, . 

Eq. (25) is the analytical solution for the maximum homogeneous 
stress, which can be applied based on the coupled criterion. The in-
stantaneous initiation length ( ac) can be determined by substituting 
the critical stress in Eq. (25) into either Eq. (18) or (23). Fig. 6(b) shows 

ac as a function of the initial crack length. 
Phase-field. To model the same problem using the phase-field ap-

proach, a geometry shown in Fig. 2(b) was used. Only one quarter of 

Fig. 2. Mode I tensile opening: (a) schematic problem; (b) finite element model 
with double symmetry. =L amax(10 , 20 mm). For the phase-field calculation, 
only the intact horizontal part was constrained against uy, the crack faces were 
left free to move. 

Fig. 3. Coupled stress and energy criteria for tensile (mode I) fracture. Black 
crosses represent the length where the stress criterion is just satisfied, while 
hollow circles show the same for the energy release rate. By increasing the 
external load, the two positions approach each other until both are satisfied. 
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the space was taken into account with symmetric boundary conditions 
on the middle lines. The overall length of the sample (L) was taken 
larger than a100 , otherwise the finite size had a marked effect on our 
results. Dirichlet boundary conditions were prescribed on the edges as 
displacements and a =d 1 phase-field value on the crack surface. The 
prescribed phase-field value was shown to be necessary as the creation 
of the crack required more energy than the propagation of an already 
existing damage field [45,86,92]. Recently Kumar et al. [46] proposed 
an additional crack driving force attributed to microscopic damage to 
account for the correct nucleation phenomenon. 

The material properties were set according to Table 1. 
The results obtained using the finite element, and thus, the phase- 

field method, were affected by both the spatial and temporal dis-
cretization. Therefore, a convergence study was carried out to minimize 
the error induced by the numerical approach. 

The time step was controlled automatically. The local potential 
energy increment was constrained based on the following condition: 

d
g
l

·
2

,c

c
H

(27) 

where H is the elastic (undamaged) strain energy history used in the 
staggered schemes [66,69,70] and is a scalar multiplier. There are 
other methods to determine an optimal time step size. We chose to 
constrain the elastic energy because Abaqus solves the displacement 
and fracture problems simultaneously. Therefore, the control of the 
fracture energy is not tractable. For a general overview, we refer to the 
work of Gupta et al. [39]. 

In Fig. 4(a), the normalized critical stress values are shown as a 
function of for different finite element mesh densities. It can be seen 
that by constraining the local elastic energy increment, the critical load 
decreased, and the precision of the simulations improved. If an 50% 
was chosen, the critical stress changed by less than 0.1%. 

Similarly to the temporal discretization, the spatial mesh also had a 
significant effect on the results. Miehe et al. [67] proposed a ratio of 

=l h/ 2c value based on the crack surface. However, as shown in  
Fig. 4(b), the mechanical effect changed notably until =l h/ 10c . 

Finally, to find out if the phase-field solution converged to the 
theoretical Griffith value, lc was reduced. The other two numerical 
parameters were kept at = 50% and =l h/ 10c . It can be seen in  
Fig. 4(c), that the solution converged to a value 10% higher than y

G0, , 
which could supposedly be reduced by increasing the finite element 
density and reducing the time step. 

Thus, if not otherwise stated, the simulations are performed using 
= 50% and =l h/ 10c with varying lc. 

In Fig. 5 the variation of the time step is shown for =l 0.1c mm with 
= 0.5. After an increment the algorithm gradually decreased the cri-

tical time step size to 10 6 until the loading reached the unstable 
initiation stage. The fluctuations show that the time integration algo-
rithm of Abaqus continuously tried to increase the time step to accel-
erate the calculation. At the moment of an unstable initiation the time is 
reduced close to zero ( 10 9). With the adaptive time integration al-
gorithm we were able to detect unstable initiation and avoid the error 
described by Ambati et al. [2]. 

One of the main advantages of the coupled criterion is that it can 
capture an experimentally well-observed size effect. Bažant [9] showed 
that the fracture resistance of several materials (even glasses [44]) 
deviated from the power-law described by linear elastic fracture me-
chanics (LEFM). This was particularly true if the initial flaw size was 
smaller than a critical value. In this case, the verification should be 
carried out based on a stress comparison. Since Bažant [9], multiple 
authors proposed a unified description applying the coupled criterion 
for ceramics [50,60], PMMA and GPPS [25,85], which follows the ex-
perimentally observed size effect. 

Fig. 6 presents a plot of a similar size effect as a function of the 
initial crack length. Critical stresses are shown as a function of the in-
itial crack length using the coupled criterion (see Eq. 25) with red 

curves, the original Griffith solution (see Eq. 24) with a blue dashed line 
and phase-field simulations with black symbols. The tensile strength 
used in the coupled criterion was taken according to the critical stress 
value obtained at a very small crack length ( =a 10 4 mm) in the phase- 
field simulations. 

It can be seen that the phase-field results were capable of re-
producing the same size effect as was theorized and experimentally 
measured before. Furthermore, the deviation from LEFM started when 
the initial crack size approached and became smaller than lc. In  
Fig. 6(b) the initiation length ( ac) varies between lc and l2 c with an 

Fig. 4. Convergence analysis of the phase-field simulation for tensile (mode I) 
fracture with an initial crack length of =a 2 mm. The applied critical stress 
( y

c0, ) is shown normalized by Griffith’s solution ( y
G0, ). (a) Results as a function 

of the maximal energy increment ( ) and the finite element sizes with constant 
lc = 0.2 mm. The dashed curves are guides for the eye. (b) Critical stress as a 
function of the finite element size for different models with lc = 0.2 mm. A 
hyperbolic curve ( + h

lc
) with a convergence to (at l h/c ) is fitted to 

the data. (c) Critical stress as a function of lc with an inverse square root 
function ( + lc ), where l 0c the value converges to . The goodness-of- 
fit of all functions was greater than >R 0.992 . 
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inflection point at =a lc0 . This result indicates that the correlation 
between lc and the size of the process zone is not unique because, de-
pending on the initial crack length, its value varies. Nevertheless, the 
two quantities are on the same scale. Later in Section 4 the correlation 
between lc and ac will further be discussed. 

Additionally, it can be seen that the phase-field results were closer 
to the instantaneous description of G since the deformation field was 
allowed to evolve and change with the advancement of the crack during 
the simulation. Nevertheless, there was a small difference between the 
critical stress results, which might be due to the fact that the coupled 
criterion uses an infinite stress field, while the singularity in the phase- 
field model is regularized. This discrepancy is discussed in Section 4. 

The results presented in Fig. 6 are critical as they show that the 
introduction of the crack diffusion, and thus the length scale, does not 
spoil the original description of Griffith but adds a unique tool to 
capture the real-life physical phenomenon. Even if the choice of the 

phase-field description affects the behavior of the models, it is essential 
to consider that lc possesses a real mechanical meaning. 

Multiple computations were carried out with =a 0 in the phase- 
field calculation to determine a correlation between tensile strength 
and the length scale. This way, the initial damage field was prescribed 
only on a single node. As explained previously, in this case, the critical 
initiation stress corresponded to the material’s strength, hence allowing 
for a direct comparison for several length scales in the phase-field 
method. The critical stress results were recorded as a function of the lc
used. In Fig. 7, the obtained c-lc pairs are shown with the homogeneous 
solution from Eq. (9) for uniaxial tension (with the principal stress ratio 
of =/ 02 1 ). 

There is a clear correlation between the two quantities. By de-
creasing lc, the tensile strength is raised and tends to infinity. This result 
is in agreement with the original solution by Griffith, since when 
a 0, G0, tends to infinity. 

3.2. Mode II shear fracture 

After assessing the critical stress for the two methods as a function 
of the initial crack length, this section focuses on the crack’s topology. 
For mode II shear fracture, the prediction of the initiation angle is still 
an unsolved question. Many theories have been proposed, based on the 
maximum tangential stress [26], the strain energy density [87], the 
energy release rate [96,40], or even the stress intensity factors [48,5]. 
Some of them reproduce specific experiments [26], but none of them 
can describe a universal law that is valid for all materials [7,83]. 

We assume that the variation in initiation comes from the difference 
in regularization length, thus the ratio of strength and toughness. 
Therefore, we set out to analyze the initiation using both the coupled 
criterion and the phase-field method and establish a correlation based 
on the quantity above. 

Fig. 8(a) shows the theoretical problem of mode II shear fracture. 
The applied shear stresses acted on the sides at infinity. The initiation 
angle was measured from the horizontal axis. 

Experimentally, Ayatollahi and Aliha [7] tried to model pure shear 
on a finite-size specimen by maintaining an angle between the pulling 
forces and the initial crack, as shown in Fig. 8(b). However, we show 
later on using a phase-field model that their geometry has a significant 
effect on the initiation angle, and that the two cases are not equivalent. 

Coupled criterion. Unfortunately, no analytical solutions were 
available to test the coupled criterion on a mode II fracture. Only cer-
tain aspects of the stress and energy field were known. The elastic stress 
field around the initial crack tip is described in various textbooks  
[15,91], whereas the energy release rate is given only for the case when 

Fig. 5. Chosen time step during the simulation with = 0.5 and =l 0.1c mm.  

Fig. 6. (a) Critical stress obtained by phase-field simulations (symbols) and the 
coupled criterion (red curves) as a function of the initial crack length in mode I 
fracture. With blue dashed line the solution of Griffith is plotted. The length 
scale parameter used in the phase-field simulations are highlighted at 

= =a l 0.2c mm. (b) Initiation length as a function of the initial crack length 
calculated using the coupled criterion and Eq. (13). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 7. Critical stress as a function of lc with different models for mode I tensile 
opening for =a 0 obtained using phase-field simulations and the homogeneous 
solution for unidirectional tension (based on Eq. 9). 
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and for the case when =a 0 by Wu [96] and Hayashi and Nemat- 
Nasser [40]. 

For this reason, we carried out the following modeling strategy to 
obtain a precise close crack tip ( <a a/2) solution: First, finite element 
calculations were performed with varying crack length values in dif-
ferent directions ( °90 0), after which the global energy differ-
ence was calculated between each crack increment (see Eq. 13). Finally, 
we used empirical functions to fit the results. 

The calculation of the energy release rate using finite elements is 
relatively straightforward. To minimize the size effect, the overall size 
of the plate was =L a250 0. As boundary conditions, we used distributed 
shear forces in the boundaries. G was computed between energy values 
calculated for the same value with increasing a. Between each model 
the crack was increased by =a a0.025 0. To eliminate the fluctuation 
caused by the mesh the so-called seam crack was utilized. Practically, 
the same finite element mesh was used independently of the crack size, 
and only the nodes were doubled on the crack lips to separate the 
elements. This technique makes it possible for us to use the same mesh, 
for a constant value, and to significantly reduce the fluctuation in the 
energy release rate. The characteristic element size around the crack 
was set to a/100. 

The maximum difference between finite element calculations and 
available analytic data was less than 1%, which means they were of the 
same order of the magnitude. In order to speed up the calculation, a 
continuous function was fitted: 

=
+

=G a
a

µ
f a

a
G f a

a
( , )

( 1)( )
8

, · , ,xy0
0 2

0
0

0 (29) 

where G0 is the energy release rate for a horizontal opening, and f is a 
dimensionless function describing the effect of the finite crack length 
( a) and its direction ( ): 

= + +f a
a

a
a

a
a

, ( ) ( ) ( ).
0 0

2

0 (30)  

From the analytic solution we know that = =(0) 0, (0) 1 and 
=(0) 1. Additionally, the values of ( ) are available without a closed- 

form expression from the solution of Wu [96]. 
Based on the finite element calculation, the form of functions 

( ), ( ) and ( ) are given based on a semi-empirical fit: 

= + ° +( ) tanh ( 90 ) ,s
max

max

2

max
(31)  

= + ° +( ) 2 tanh ( 90 )
2

1,s
2

(32)  

=
+ °( )

1
2

1
2

cos · 180 .max max

max (33)  

Parameters , smax , and s were set according to the finite element 
calculations, while max (maximum increment) and max (angle at 
maximum increment) were taken from the analytic solution of Hayashi 
and Nemat-Nasser [40]: 

=
=
=

= =
= °

0.014303
0.58415
0.045113

( ) 1.517
75.74

s

s

max

max max

max (34)  

The maximum difference between the fitted function and the finite 
element calculation was 1.17%, the goodness of fit of ( ) to the ana-
lytic values was =R 0.992 , and the maximum difference was smaller 
than 1%. 

The critical stress defined by the Griffith criterion for pure shear 
fracture is: 

=
+

µg
f a

8
( 1)

,xy
c c

c

0,

0 (35) 

where =f 1.504c corresponds to the local extremum (saddle point) of 
the increment function at =a a/ 0.0750 , as seen in Fig. 9(b) and (d). 

For mode I, the crack path was assumed to be known, however for 
mode II fracture, not only the critical shear stress and the initiation 
length but also the propagation angle was unknown. Therefore, in 
contrast to Fig. 3, in the case of mode II, the spatial intersection of two 
curves should be determined. This is shown in Fig. 9(a) where the 
spatial distribution of the fracture energy ratio is depicted. The values 
of =G g/ 1c are highlighted with black curves for different loading 
states. It can be seen that in this case, the criteria was not satisfied by 
only one point but by a whole isocurve. The isocontours of the tan-
gential stress to strength ratio ( =/ 1t c ) are also displayed with red 
lines. Similarly to the energy criterion, for a given loading state, the 
stress criterion was fulfilled for an infinite number of points on the 
curve. Initially, for a small enough imposed loading, the domains de-
fined by the two criteria (dashed red and black lines) did not intersect: 
indeed, no crack increment was observed with any angles. By in-
creasing the load, the two criteria approached each other, and when a 
single shared point (hollow circle) was reached, the crack started to 
propagate. This point determined both the initiation length and pro-
pagation angle. 

Similarly to Fig. 3 we can plot the normalized criteria along the 
assumed initiation path: the local maximum of the energy release rate 
(highlighted with a dash-dot line in Figs. 9(a) and 10(a)). This is shown 
in Figs. 9(b) and 10(b). Similarly to the tensile fracture when the to 
curves intersect at = =G g/ / 1t c c , the crack will start to propagate. 
Interestingly we found a small decay in the maxima of G at 

=a a/ 0.0750 , which suggests a second type of behavior. 
If G decreases initially, and the tensile strength is sufficiently high, it 

is possible that the two criteria become satisfied at the crack tip. 
However, as both functions decrease, the propagation is first stable as 
there is a part where G g/ c is not yet satisfied. The effect of this propa-
gation is depicted in Fig. 10, which means that spatially not only one 
point but a surface satisfies both criteria. The coupled criterion cannot 
discriminate among all these configurations. Consequently, we assumed 

Fig. 8. Mode II shear test: (a) schematic illustration of the problem in an in-
finite domain; (b) diagonally loaded square plate (with finite-size) for experi-
mental comparison: =L 150 mm, =a2 450 mm. 
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that the crack would start propagating on the local maximum of G, but 
displacing the crack tip and the stress singularity. This is shown in  
Fig. 10(a) with red circles and in Fig. 10(b) with greed dashed lines. 
Finally, when a common point was reached where dG da/ was positive, 
the sample broke. 

In Fig. 11(a), the critical stress is shown normalized by the Griffith 
solution (Eq. 35) for different initial crack lengths as a function of the 
tensile strength. In Fig. 11(b), on the other hand, the initiation angle is 
depicted as a function of c. The solid symbols show the initially stable 
propagation and the hollow ones depict the unstable first jumps. For 

=a 2 mm, we highlighted different regions: (i) the initial white part 
from °75c is the region where the stable propagation took place, (ii) 
while the blue part represents the first unstable jump. If c is sufficiently 
low, the energy criterion is only satisfied only at distances larger than 
the local minimum wherefore no stable initiation was observed. 

Additionally, it is interesting to see that the crack initiated not only 
in a single direction, but could choose its propagation according to the 
material and the geometry. This observation was in agreement with the 
experimental results of Richard et al. [83]. 

Phase-field. To test the hypothesis established using the coupled 

criterion, the model shown in Fig. 12 was developed using the phase- 
field approximation. 

L was taken with a similar value as in the previous case: =L a250 0. 
The nodes on the crack lip were doubled to include an infinitesimally 
small slit with a prescribed Dirichlet boundary condition in the phase- 
field set to 1. An observation region around the crack tip was formed 
with a radius of =h l10r c (see Fig. 12(a) green region), where the finite 
elements were refined according to =l h/ 10c . The simulation was run 
until the crack reached the boundary of the observation region. To 
apply the loading, the sides of the sample were displaced according to  
Fig. 12(a). The material properties were set according to Table 1. 

When the crack was diffused, it became challenging to measure its 
exact path. Therefore, to extract the initiation angle, the local maxima 
of the damage field was identified from a distance larger than lc, as 
shown in Fig. 12(b) with small circles. Subsequently, these positions 
were fitted with a third-order polynomial, which was then extrapolated 
to the crack lips. 

This section deals with the crack topology and not the critical stress, 
as the loading case with =a 00 was equivalent to the geometry pre-
sented in the first section, only with a different /2 1 ratio. Therefore, 

Fig. 9. Coupled stress and energy criteria in the case of shear (mode II) fracture with low tensile strength (unstable initiation). (a) The colored plot shows the 
normalized energy criterion. With black the isocurve is shown where =G g/ 1c . While with red curves the stress criterion is highlighted as a function of the increasing 
load ( =/ 1t c ). Hollow circles show the position and the initiation length where both criteria are just satisfied, and the crack can propagate. (b) Both normalized 
criteria are shown on the path of the local maximum energy release rate as a function of the distance from the crack tip. Hollow circle shows the distance of the first 
unstable jump. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Coupled stress and energy criteria in the case of shear (mode II) fracture with high tensile strength (stable initiation). (a) Red curves represent the state of the 
stress ( =/ 1t c ), black curves with the colored plot show the state of the energy criterion (G g/ c). (b) Similarly to Fig. 9, the two criteria are shown along the assumed 
propagation path. Hollow circles show the position and the initiation length where both criteria are just satisfied, and the crack can propagate. Due to the stable 
initiation, the original crack front advanced, and the crack tip became displaced. This phenomenon is shown with red crosses in part (a) and green li.nes in part (b). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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only the limit cases are compared in Table 2. It is shown that for a small 
crack, the homogeneous solutions were in good correspondence with 
the critical values obtained with the phase-field model. In the case of a 
large a0, the results were much closer to the solution of Griffith (Eq. 35). 

Compared with the tensile strength, the advantage of the length 
scale parameters is that it introduces an internal size. Therefore, Fig. 13 
shows the initiation angle as a function of a dimensionless regulariza-
tion length, l a/c 0, which indicates that the propagation and initiation 

depend only on the ratio of the original crack length and lc, this is in 
good correspondence with the results of the energy landscape defined 
for the coupled criterion, as the local minimum is found at a0.075 . As 
can be seen in Fig. 13, the initial crack length had no effect on the 
results, thus a master curve could be defined. 

With small lc the crack initiates at an angle around °~ 73 , which is 
in good correspondence with the values obtained using the coupled 
criterion ( ° °[ 75 , 69 ]c ). The only difference is that due to the 
regularization, the stable-unstable transition is very hard to identify. In 
the phase-field simulations, we almost always observed a small initial 
stable region where the reaction force continues to increase. On the 
other hand, with a large lc value, the crack inclination is °45 , which is 
in agreement with both a theoretical and coupled criterion point of 
view. 

As shown in Fig. 11(b), for a given initial crack length, the in-
clination angle is sensitive only to a range of chosen c values. There-
fore, to establish the correlation between lc and c based on the initia-
tion angle, a0 was varied. First, a range of a0 was determined for a given 

c, where the initiation angle lay between −61° and −46°. Then we 
subdivided the obtained a0 interval and calculated c. Each initiation 
angle was then interpolated between the phase-field results to obtain a 
normalized length scale. Finally, the value was multiplied with the 
initial crack length to determine lc as a function of c and c. 

Fig. 14 shows the correlation between lc and c. The blue area de-
picts the variation induced by the chosen c value. It is visible that there 
was a small variation, but results quickly converged from −55°. Using 
higher inclination angles may introduce a numerical error due to the 
difficulty in the angle measurement in phase-field calculations. The 
topological correlation is in agreement with the homogeneous solution 
(established based on critical stress). 

To test if finite-size has an effect on the initiation angle the specimen 
proposed by Ayatollahi and Aliha [7] was tested, as shown in Fig. 8(b). We 
used =l 0.3c mm. The initial crack length was 22.5 mm, thus 

=l a/ 0.0133c 0 , which indicated a Griffith-like brittle response according to  
Fig. 13. Therefore, no further impact was expected from the additional 
reduction of lc. The thickness of the plate was assumed to be 5 mm. 

Fig. 11. (a) Critical load normalized by the Griffith criterion (see Eq. 35) as a 
function of tensile strength. (b) The angle at which the unstable crack propa-
gation starts as a function of tensile strength. The solid symbols show cases 
where the crack initiation is stable; hollow symbols represent unstable ones. In 
the stable cases, the initiation followed the local maximum path of G until the 
firs.t unstable jump. 

Fig. 12. (a) Finite element model for mode II shear fracture. (b) Interpretation 
of the phase-field results and the calculation of the critical initiation angle ( c). 

Table 2 
Critical shear stress ( xy

c0, ) calculated with different approaches and two initial 
crack lengths (a0) with =l 0.35c mm.      

Initial crack length 
(a0) 

Griffith’s solution 
( xy

G0, ) 
Phase-field Homogeneous solution 

[mm] [MPa] [MPa] [MPa]  

10 3 469.77 17.86 18.00 
10 4.69 4.99 

Fig. 13. Critical fracture angle ( c) as a function of the length scale parameter 
(lc) for different models. 
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Fig. 15 shows both qualitative and quantitative comparisons be-
tween the experimental measurement [7] and the phase-field simula-
tion. 

The initiation angle in the simulation (77.8°) corresponded well to 
the experimental measurements ( °78 ). While the distance between the 
arrival of the crack and the corner of the specimen differed only by 
1.15 mm. 

In conclusion, the topological correlation was in correlation with 
the homogeneous solution for the standard solution, while the elastic 
threshold introduced a higher resistance but left the crack topology re-
latively unchanged. 

3.3. Stable propagation in the TDCB specimen 

The final comparison is focused on the tapered double cantilever 
beam (TDCB) [36]. This geometry is particular due to the crack in-
itiating in an unstable way, but after a well-defined distance, it stops. 
This section aims to test whether the phase-field method can follow an 
unstable-stable transition, and if the arrest length can give an additional 
correlation between lc and c. 

Coupled criterion. The geometry of the TDCB sample is depicted in  
Fig. 16. As can be seen, the initial crack length varies, and in the case of 
the TDCB geometry, neither the tensile stress nor the energy release rate 
is available analytically. For this reason, the finite element method was 
used to determine the two functions. For the coupled criterion the stress 
function was calculated using a mesh densified around the crack tip. 
The smallest element size was chosen to be 0.5 µm. The energy release 

rate was calculated similarly to the shear problem: a seam crack was 
defined, and the opposite nodes were gradually separated. Finally, the 
derivative of the global potential energy was taken in respect to the 
crack length, using the finite difference method as shown in Eqs. (12) 
and (13). Essential to note, that to obtain smooth results, the energy 
difference has to be calculated on the same mesh. The material prop-
erties were set according to Table 1. 

The normalized criteria are presented in Fig. 17. The inset illustrates 
the smallest length where both stress and energy criteria are satisfied 
(hollow circle), while the global figure shows the evolution of the en-
ergy release rate as a function of the crack length. 

The crack propagated as long as the energy criterion was fulfilled. 
Therefore, we plotted both instantaneous and incremental G, which 
defined a lower (hollow square) and an upper limit (solid square) for 
the arrest length. The energy release rate was not monotonous. In the 
case of =a 00 , the energy release rate at =a 0 was zero, since the 
Griffith criterion cannot be used if there is no sharp crack at the be-
ginning. After this, G first increased according to a power law. At 

=a 1.17 mm, we found a global maximum, after which the function 
decreased monotonously. For =a L G, became zero as there was no 
longer any stored energy in the sample. After the first unstable jump, 
the energy release rate decreased monotonously wherefore the propa-
gation became stable. 

Fig. 18(a) shows the critical reaction force where the first crack 
initiated. It can be seen that if =a 00 , the result diverged as a function 
of c. Due to the fact that =G alim ( ) 0

a 0
, there was no critical solution for 

the energy criterion by itself. Therefore, the theoretical resistance went 
to infinity. As a result, when no sharp crack is present, it is crucial to use 

Fig. 14. Critical tensile strength ( c) as a function of of lc with different critical 
fracture angles ( c) for mode II shear fracture. The inset shows the convergence 
of lc as a function of c. 

Fig. 15. Phase-field results compared to experiments for the diagonally loaded 
square plate specimen. 

Fig. 16. Tapered double cantilever beam (TDCB) geometry: =L 100 mm, 
=h 451 mm, =h 302 mm, =l 12.8x mm, =l 14y mm, =c 36.50 mm, =h 5c mm. 

Due to symmetry, only the upper part was modeled. 

Fig. 17. Coupled stress and energy criteria for the TDCB specimen.  

G. Molnár, et al.   Theoretical and Applied Fracture Mechanics 109 (2020) 102736

11



the coupled criterion. However, when a small initial crack was present, 
G started from a finite value, and quick convergence was thus shown as 
a function of c. In the third stage, when a 1.170 mm, the initiation 
became stable, and the resistance depended only on the Griffith cri-
terion, while the first initial plateau up to = 15c MPa indicated that 
the stress criterion was satisfied beyond the local maximum. 

Similarly to the reaction force, without an initial crack, the pre-
dicted arrest lengths shown in Fig. 18(b) diverged as a function of c, 
whereas they became convergent with small a0. The upper limit of the 
arrest length could not be interpreted in case of low strength values as 
the crack started to propagate before than G g/ 1inc c was satisfied. 

Phase-field. The corresponding phase-field model was developed 
similarly to the previous examples. The initial crack was defined using 
the Dirichlet boundary condition in the damage field. When =a 00 , the 
phase-field value on only one node was predefined. The loading was 
applied to the hole using a rotating pin to avoid nonphysical con-
straints. To determine the crack length, the fracture surface energy was 
normalized by gc and the thickness: =a W

g wc
. 

The comparison between lc and c was made based on three quan-
tities: (i) reaction force, (ii) arrest length based on G and (iii) Ginc. The 
obtained results are shown in Fig. 19. It can be seen that the correlation 
established using the instantaneous energy release rate and the reaction 
force were close to each other as well as to the mode I homogeneous 
solution. Therefore, the incremental energy release rate underestimated 
the tensile strength. Consequently, its use should be limited for this 
comparison. These results reinforce that the finite element phase-field 
calculation recalculated the energy state of the system step by step and 
reordered the elastic stresses during the propagation. Even if the un-
stable initiation can be considered very fast, it was not instantaneous, 
not even when using a quasi-static approach. 

In Fig. 19, the result obtained using the phase-field simulation is 
plotted. While, Table 3 contains critical loading values with =a 00 and 

=a 50 mm. The instances with =a 00 show that, similarly to the cou-
pled criterion, the results diverged. These results were slightly different 
from that obtained for the simple tension case shown in Fig. 4(c). 
However, the convergence became better if an initial crack was pre-
scribed, but the results still depended on lc, which is in conflict with the 
outcomes when using the coupled criterion and are analyzed in Section  
4. 

4. Discussion 

This section is dedicated to exploring the differences between the 
coupled criterion and the phase-field simulations. In certain instances 
as shown in Figs. 6 and 19 the critical reaction force values did not 
exactly match the transition described using one or the other descrip-
tion. The major difference probably came from the fact, that while the 
coupled criterion assumed a singular stress field, the phase-field model 
was regularized. This dissimilarity could also cause deviations in the 
potential energy. 

Generally, the correlation was clear: With a lower lc, the strength 
( c) increased. The correlation, however, could not be described by a 
single master curve. Based on the failure envelope shown in Fig. 1(b) it 
could vary in the range shown in Fig. 20. 

In phase-field simulations, lc is the width of the exponential func-
tion, which is the solution for the crack topology problem described by 
Eq. (6) [67,69]: from the crack tip, where =d 1, the damage field re-
duces exponentially to zero at infinity. Therefore, the actual distance 
where the material is damaged cannot be explicitly determined, lc
provides only an estimate of the area where the material is significantly 
damaged. This obstacle could be tackled by changing the phase-field 
representation to the description of Bourdin et al. [14], where damage 
is already zero at l2 c. 

Fig. 18. (a) Normalized reaction force at initiation as a function of tensile 
strength ( c) and initial crack length (a0). (b) Crack arrest length for =a 0.00
mm and 0.1 mm initial crack length. 

Fig. 19. Correlation between the tensile strength ( c) and the internal length 
scale lc for the TDCB specimen. 

Table 3 
Maximum reaction force for the phase-field simulation at fracture as a function 
of lc and the chosen model.     

Length-scale (lc) Maximum reaction force - Pmax [N/mm] 

[mm] =a 00 =a 50 mm  

0.05 59.41 no data 
0.1 57.45 46.39 
0.2 55.48 45.96 
0.3 54.28 45.53 
0.5 52.74 45.03 
1.0 50.47 43.87 
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Distance, as a material parameter, does not appear explicitly in the 
coupled criterion either. However, the abrupt initiation length is es-
sential to determine where both criteria are satisfied at the same time, 
as shown in Section 3.1. We can then substitute the critical loading back 
into Eq. (23) to calculate the initiation length, thus the assumed process 
zone size. This value, as was shown in Fig. 6(b) varies with the geo-
metry. Therefore, only the tendencies will be analyzed here. To calcu-
late ac for each lc value the following procedure was used: (i) first the 
correlation between lc and c was established as shown in Fig. 20; (ii) 
then we used the identified c in the coupled criterion to calculate ac. 
For example Fig. 6(b) shows ac for = 29.1c MPa ( =l 0.2c mm) as a 
function of the initial crack length. It can be seen that the values vary 
between 0.2 mm (for large cracks) and 0.4 mm (for small initial de-
fects). If we generalize this relationship the correlation between lc and 

ac can be plotted in Fig. 21. Black solid and dashed lines show the 
correlation between the two quantities for the tensile opening mode 
based on the homogeneous solution, while the hollow and solid circles 
represent the actual phase-field simulations. 

Similarly to mode I, both shear (mode II) and TDCB results can be 
obtained with red triangles and blue squares, respectively. Stunningly 
all correlations are perfectly linear ( =R 1.02 ). Although the geometry 
itself affects the quantitative values, we assume that the actual initia-
tion length (thus, the assumed process zone size and shape) is geometry 
dependent. This signifies that lc can be considered an intermediate 
quantity between Irwin’s intrinsic length and the size of the actual PZ. lc
already takes into account the local stress state, but cannot account for 
the macroscopic geometry. The correlation shown in Fig. 22 

demonstrates that if the initiation length could be measured, it might be 
possible to deduce lc and lmat. 

The energy release rate and the local stress maxima were de-
termined for the phase-field model upon propagation to obtain more 
local details. However, calculating the energy release rate without an 
elastic threshold can be difficult as the crack advancement and the 
crack surface are not interchangeable. Due to the intrinsic nature of the 
damage models, a small amount of damage appears in most of them. 
Therefore, the global fracture surface is always going to be larger than 
the localized extent of the crack. However, it is difficult to measure the 
crack length based on the topology. As a consensus, a threshold of 

=d 0.9 is used. Employing the fracture topology to define crack ad-
vancement is especially difficult at the initiation stage, as energy can be 
lost without a topological change, since the phase-field value can in-
crease without its propagation. The difference between topological and 
global crack length vanishes as lc tends to 0. This description could be 
improved with the fracture surface proposed by Bourdin et al. [14], 
however the implementation of such approach is difficult in a com-
mercial finite element code like Abaqus. 

Fig. 23(a) shows the energy release rate calculated for the TDCB 
sample with different lc values using both global and topological ap-
proaches. It can be seen that the global approach gave a much lower 
value than the theoretical curve. The global criterion better described 
the initiation, however, it ran 5% below gc at the arrest stage. In-
dependently of lc, at initiation, all simulations satisfied the energy re-
lease rate criterion. This was expected as the simulations are based on 
the energy equilibrium of the regularized elastic fields. The topological 
description is much closer to the theoretical energy release rate; how-
ever, it overestimates the initiation but remains higher when the crack 
stops. Presumably, the physics is better described by a mix of the two. 

The discrepancy between theory and phase-fields can be explained 
by the difference in the stress regularization at the crack tip, as shown 
in Fig. 23(b). For the coupled criterion, we assumed a singular stress 
solution, while in the phase-field method, the stress was damaged. That 
is the reason why simulations with a lower lc gradually converged to the 
theoretical curve. 

To understand why the crack arrested before reaching its theoretical 
limit, in Fig. 23(c), we plotted the maximum tensile stress ( y

max) taken 
from the horizontal axis during the loading period until the crack ar-
rested. It can be seen that before the initiation, the stress was much 
higher than the assumed limit. However, the crack started to propagate 
when the global energy release rate became 1.0. The crack did not start 
to propagate until both criteria were unsatisfied and only propagated to 
the point when the two criteria were still satisfied. It seemed that when 
the stress criterion was no longer satisfied, the propagation came to a 
halt. The limit stress - as long as the crack propagated - was in agree-
ment with the mode I value obtained in Section 3.1. Interestingly, even 
if the phase-field was not based on the two criteria (stress and energy), 
due to the length scale parameter, it followed their principles. 

The phase-field model was created to satisfy the energy-based cri-
terion only. More precisely, if the rate of elastic strain energy released 
from the sample was higher than gc, the fracture would advance. 
However, we showed that there existed a correlation between the 
maximum tensile stress and the parameter lc. Therefore, the phase-field 
method itself was sensitive to a stress-based criterion, even if this 

Fig. 20. Summarized correlations between the tensile strength ( c) and the 
internal length scale (lc). 

Fig. 21. Summarized correlations between the initiation length ( ac) and the 
internal length scale (lc). 

Fig. 22. Correlation between the materials intrinsic length, the phase-field 
length scale and the initiation distance identified using the coupled criterion. 
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correlation was indirect. This dependence is explained in Fig. 24. On 
the left side, the basic idea of the coupled criterion is depicted. When 
the tensile strength was reduced, the regularization length, thus the 
allowed crack increment was larger. Consequently, the Griffith criterion 
became satisfied earlier and a smaller applied force/stress was suffi-
cient to induce fracture. 

Using the same logic, the phase-field approach can be understood as 
follows. If lc is increased, the regularization/process zone becomes larger. 
This causes the maximum stress to be reduced (as seen in the left inset) 
and also causes more damage to the elastic strain energy. A simple test was 
conducted: the strain energy difference was calculated between two crack 
lengths using predefined phase-field boundary conditions. The effect of the 
loading was emitted from the phase-field calculation; only the energy 
degradation was taken into account on a mode I tensile problem. We 

found that the energy released by a unit increment increased as a function 
of lc. Essentially, the integrated crack surface remained constant, because 
the normalization in included lc, see Eq. (1). In conclusion, if lc increased 
the elastic energy release rate, Griffith’s criterion would be satisfied ear-
lier, causing a reduction in the critical stress/force. Thus, the combination 
of the smaller reaction force for a given gc and the larger regularization 
would result in a smaller maximum tensile stress. This correlation might 
be interpreted as a smaller tensile strength as a function of a higher lc. 

5. Conclusion 

This article presents a comprehensive study focusing on the effect of 
the length scale parameter in phase-field fracture. The smeared damage 
approach was compared to the coupled stress- and energy-based cri-
terion. Several elaborate benchmark examples were shown, and results 
based on the critical loading, crack topology, and crack arrest length 
were discussed. In each case, the relationship between tensile strength 
and the internal length scale was established. 

First, a convergence study demonstrated that the standard phase- 
field approach converged to Griffith’s solution. Otherwise, a gradual 
decrease was found in the critical stress if the finite element density was 
increased, or the elastic strain energy increment was constrained. 

Generally, we found similar quantitative and qualitative results for 
both the phase-field approach and the coupled criterion. In mode I 
tensile fracture, both methods demonstrated the experimentally ob-
served size effect. For the mode II shear case, on the other hand, a 
transition in the initiation angle between 74–73° and 45° was found 
based on the chosen strength and length scale. Finally, the two methods 
were equally capable of describing the transformation from unstable to 
stable propagation, or in other words the crack arrest phenomenon. 

Throughout our paper, we highlighted the difficulties faced when 
the theoretical description with a sharp discontinuity is compared with 
a smeared damage approach. For instance, we proposed viable solutions 
to measure the crack length and the initiation angle for quadratic 
phase-field variation. All macroscopic models demonstrated good cor-
respondence with experimental measurements and the homogeneous 
solution of the phase-field method. 

However, one of the most relevant results of the present paper is the 
unique correlation between the internal length scale, maximum tensile 
strength and the initiation length. We showed that this relationship 
could be described with a surface rather than a single curve as the stress 
state has a significant effect on the results. We showed that the in-
stantaneous initiation length increases linearly with lc, confirming that 
lc controls explicitly the size of the first crack advancement. We 

Fig. 23. (a) The normalized energy release rate as a function of crack advancement. With red dashed lines, G is plotted from the coupled criterion, assuming identical 
reaction forces at fracture as the phase-field calculation. The hollow symbols represent phase-field results based on the global fracture surface; whereas filled symbols 
show the frack front position, where >d 0.9. (b) Tensile stress for different regularization length compared to the singular solutions for the same reaction force. (c) 
Maximum tensile stress ( y

max) close to the crack tip along the horizontal axis as a function of the topological crack advancement. c is shown with red dashed lines for 
different lc values based on Fig. 7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 24. Schematic illustration of the workflow of the coupled criterion and the 
phase-field approach. 
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theorized that lc can be considered an intermediate quantity between 
Irwin’s intrinsic length and the size of the actual process zone. We are 
convinced that the addition of the gradient term, i.e., the diffuse re-
presentation, helps us capture more about the physics of fracture than 
the original Griffith method. We thus consider it essential to find a 
deeper microscopic explanation for the local regularization. 

Our study demonstrated that energy- and stress-based criteria to-
gether are required to determine the resistance of a sample. The im-
portance of this phenomenon is increasingly paramount when con-
sidering real-life examples where crack sizes are usually at the 
micrometer scale. Interestingly, we observed that even if the phase-field 
solution was formulated based on energy principles, it satisfied the 
stress criterion as well at the initiation. The difference between the 
coupled criterion and the phase-field solution was explained by the 
added regularization around the crack tip. The coupled criterion kept 
the infinite stress peak, while the phase-field regularized the singu-
larity. Therefore, for the same global reaction force value, the stress and 
energy distributions were generally different, for which reason the 
global energy of the samples differed. 

It should be noted that the correlation established here only relates 
the strength and the internal length scale based on one surface potential 
and one degradation function. To generalize the relationship, this 
should be extended to a variation of phase-field formulations. After 

laying down the foundation stones of the theory, the experimental 
observation of the stress regularization would be essential [82]. 
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Appendix A. Homogeneous phase-field solution 

The homogeneous phase-field solution is obtained by neglecting the effect of the damage gradient. Therefore, Eq. (4) can be simplified, and the 
minimization problem can be solved without spatial discretization. Based on the principal strain state, the damage variable is obtained by sub-
stituting the elastic strain energy into Eq. (7): 

=
+

+

+d
g l

2
/ 2

.
c c

0

0 (A.1)  

In Section 2, the material strength is given based on the maximum tensile stress ( 1) value obtained during the deformation. The failure envelope 
is then plotted in the space of principal stresses. Therefore, to assess the maximum value, a solution is needed, which provides a straight stress path in 
the space of the principal stresses. 

The principal stresses are calculated by differentiation of Eq. (2) with respect to the principal strains: 

= = = =L L ,1
2

1
2 (A.2)  

=
+

+
g d g d µ g d
g d g d g d µ
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where and 1,2 represent the derivatives of the part functions: 

= <

= <tr
tr

0 if 0,
1 if 0,

0 if ( ) 0,
1 if ( ) 0.

i i

i

(A.4)  

In this paper, the effect of the third principal direction is neglected. 
The failure envelope, shown in Fig. 1c, is calculated for various = /2 1 ratios. To obtain the desired value 1 is gradually increased while 

searching for a corresponding 2 value based on the following relationship, which was derived from Eq. (A.3): 

= +
+

µ g d g d
µ g d g d

2 ( · ) ( · )( 1)
2 ( · ) ( · )(1 )

.2 1
1

2 (A.5)  

Even if a direct relationship can be established between principal strains, the solution is more complicated, as d depends on the exact value of 
each positive principal strain. Therefore, an internal iteration is used to search for the precise value by recalculating d for each predicted 2. 

Finally, the maximum stress is obtained as follows: 

=
Eg
l

, ·c c

c

max 2

1 (A.6)  

The MATLAB algorithm, which calculates the concerning value can be found in Supplementary Materials. 

Appendix B. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tafmec.2020.102736. 
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