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Gergely Molnára, David Rodneyb, Florian Martoı̈ac, Pierre J. J. Dumontc, Yoshiharu Nishiyamad, Karim Mazeaud,
and Laurent Orgéasa,1
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CNRS, Laboratoire de Mécanique des Contacts et des Structures, F-69621 Lyon, France; and dUniversité Grenoble Alpes, CNRS, Centre de Recherche sur les
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Cellulose microfibrils are the principal structural building blocks of
wood and plants. Their crystalline domains provide outstanding
mechanical properties. Cellulose microfibrils have thus a remark-
able potential as eco-friendly fibrous reinforcements for structural
engineered materials. However, the elastoplastic properties of cel-
lulose crystals remain poorly understood. Here, we use atomistic
simulations to determine the plastic shear resistance of cellu-
lose crystals and analyze the underpinning atomic deformation
mechanisms. In particular, we demonstrate how the complex and
adaptable atomic structure of crystalline cellulose controls its
anisotropic elastoplastic behavior. For perfect crystals, we show
that shear occurs through localized bands along with noticeable
dilatancy. Depending on the shear direction, not only noncovalent
interactions between cellulose chains but also local deformations,
translations, and rotations of the cellulose macromolecules con-
tribute to the response of the crystal. We also reveal the marked
effect of crystalline defects like dislocations, which decrease both
the yield strength and the dilatancy, in a way analogous to that
of metallic crystals.

crystalline cellulose | nanoscale plasticity | shear bands | dislocations |
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Wood and bamboo have been used as structural materials
since ancient times due to their lightweight and remark-

able mechanical properties. One of the elementary building
blocks at the origin of these properties is cellulose microfibrils (1,
2) that are few-nanometer–thick slender fibers with a continuous
crystalline core produced at the cell membrane by the simul-
taneous elongation and crystallization of cellulose chains. The
large tensile modulus and strength of cellulose microfibrils make
them potential biosourced alternatives to synthetic nanofibers as
mechanical reinforcements (3, 4).

Vast research efforts are currently underway worldwide to
extract from biomass slender crystalline cellulose nanoparticles
(CNs) (2), i.e., portions of microfibrils. CNs are used as building
blocks for novel engineered materials, such as nanocomposites
(2, 3, 5), densely packed nanopapers (6–9) and filaments (10, 11)
with tunable supermolecular nanostructures (12, 13), and aero-
gels and foams (14–16). However, during extraction, processing,
and use, CNs are subjected to complex stress environments that
alter their morphology and mechanical properties. For example,
extraction routes often bend CNs, leading to the formation of
detrimental kinks (17), which result from the bulk plastic defor-
mation of cellulose crystals via localized shear processes (18). A
better control of such phenomena requires a deeper knowledge
of the mechanical behavior of CNs, which is linked to both their
surface properties (19) and the bulk elastoplastic properties of
their crystalline structure. The present work focuses on the latter
aspect.

The structure of cellulose crystals (1, 20, 21) implies a highly
anisotropic stiffness tensor, which so far has not been fully
evaluated experimentally. Much attention was devoted to the
longitudinal elastic modulus, estimated to be close to 150 GPa
(22–24). The transverse tensile modulus was found to be much

smaller, on the order of 15 GPa (22, 25). The full stiffness tensor
of cellulose crystals was estimated numerically, using quantum
(26) and classical (27, 28) atomistic calculations. Transverse
shear moduli were found to be 100 times smaller than longitu-
dinal tensile moduli, indicating that shear could be the preferred
mode of elastic deformation of cellulose crystals. Even in native
conditions, these values are of the same order of magnitude
as the shear stiffness of the amorphous matrix made of hemi-
cellulose and lignin [1–3 GPa (29)]. It is therefore expected
that cellulose crystals deform by shear in the plant cell walls
as well.

However, very little is known about the mechanical behav-
ior of cellulose crystals beyond the elastic domain. The mean
longitudinal tensile strength of wood CNs was estimated exper-
imentally to be between 1.6 GPa and 3 GPa (4). Atomistic
simulations (30) found a value of ≈6 GPa, closer to that esti-
mated from the strength of C-O bonds (30). The reason is
probably that experimental CNs contain defects (17, 21, 31) that
were not included in the simulations. Local shear deformation
was analyzed with molecular dynamics (8) by pulling out a
single cellulose chain from its crystal, but the intrinsic bulk
shear resistance of a cellulose crystal still remains unknown and
many questions are still open to form a complete and clear
understanding of the elastoplastic shear deformation of cellu-
lose crystals: (i) What is the overall stress–strain response of
cellulose crystals? Do cellulose crystals deform homogeneously,
anisotropically, with or without volume variation? (ii) What are
the involved nanoscale mechanisms? Do they depend on the
shearing orientation with respect to the crystal structure? And
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(iii) do crystalline defects like dislocations affect the mechanical
behavior of cellulose crystals as in crystalline metals?

To bring possible answers to the aforementioned questions
and form a better view on the mechanics of cellulose crystals,
we performed a comprehensive mechanical analysis of the inter-
play between the molecular structure and the shear elastoplastic
response of cellulose crystals, using atomic-scale simulations. To
that end, molecular mechanics simulations were carried out on
cellulose Iβ , the most common crystalline form of cellulose in
plants and animals (20, 32). The corresponding atomic structure,
sketched in Fig. 1 (see SI Appendix, section S1 for details), was
modeled using a force field commonly used for carbohydrates
(33, 34). Cellulose chains adopt an extended twofold helical con-
formation with a long axis c parallel to the z direction of the
cell. They bond with each other by hydrogen bonds in the y
direction, forming sheets of cellulose chains. As illustrated in
Fig. 1D, cellulose chains are stacked along the x direction in a
staggered manner and form a layered architecture visible in
Fig. 1 A and B. We studied the mechanical response of periodic
cellulose crystals subjected to finite simple shear strains along
three different directions, which mainly involve weak nonbonded
interchain interactions rather than the much stiffer intrachain
covalent bonds. Hence, these directions are expected to be priv-
ileged directions of deformation. The crystals were thus sheared
parallel to the cellulose layers to force cellulose chains to slide
along their faces either perpendicularly (xy shear in Fig. 1A) or
parallel (xz shear in Fig. 1B) to their long axis. We also sheared
the crystals perpendicularly to the layers (yz shear in Fig. 1C), to
induce sliding of the chains along their side. This shear direction
corresponds to the pull-out direction investigated in ref. 8. While
so far only perfect crystals have been considered numerically, we
also sheared a crystal containing defects akin to dislocations (35)
to highlight their influence on the global stress response.

Elastoplastic Shear Deformation of Perfect Crystals
Fig. 2 A–C shows the shear stress/shear strain curves obtained
with perfect Iβ crystals for the three considered shear directions.
All curves start by a linear elastic regime where the crystal defor-
mation is homogeneous with shuffles inside the unit cells (see
SI Appendix, section S3 for details) and with Gxy = 2.40 GPa,
Gxz = 2.43 GPa, and Gyz = 16.37 GPa, in agreement with ab
initio estimations (26). The shear stress then exhibits a nonlin-
ear increase up to a maximum, namely the ideal shear strength
(36–38), which is the maximum shear stress the perfect crystal
can sustain. Ideal shear strengths follow the same order as shear
moduli: τmax

xy = 0.39 GPa and τmax
xz = 0.48 GPa are close, while

τmax
yz = 1.65 GPa is about five times larger. They are smaller but

of the same order of magnitude as the ultimate stresses estimated
during tensile loading (30). Moreover, while the tensile elonga-
tion at failure of cellulose crystals is limited to a few percent

due to decohesion between cellulose chains or breaking of C-
O covalent bonds (30), Fig. 2 shows that the shear ductility of
perfect crystals is without bounds. Also, Fig. 2 D–F shows that
before the first stress drop, cellulose crystals expand anisotropi-
cally and perpendicularly to the cellulose layers by up to 7%. This
marked dilatancy reflects that cellulose chains need to separate
before they can slide over one another (see Related Atomic-Scale
Mechanisms). Other similar dilatant mechanisms are known for
instance in wood (39), polymers (40), collagen networks (41),
granular media (42), and entangled fibrous materials (43).

Besides these general trends, the elastoplasticity of cellulose
crystals was strongly affected by the shearing direction. Stress
results depicted in Fig. 2A show that, when the sample is sheared
in the xy plane, the stress follows a long plateau beyond the
ideal shear strength before dropping abruptly. At this point,
the deformation localizes between cellulose layers to form shear
bands that span the entire length of the simulation cell. As illus-
trated in Fig. 2A, Inset and Movie S1, two shear bands coexist
but this number depends on numerical noise. The shear bands
form between layers of cellulose ribbons and allow one layer
to slide over the other to recover a perfect crystal. As a result,
the stress drops close to zero. The slightly negative remaining
stress is due to an elastic deformation of the otherwise per-
fect crystal. The offset inside a shear band corresponds to the
unit cell parameter b in the y direction. The strain where a
perfect undeformed crystal is recovered depends on this param-
eter but also on the number of shear bands (n = 2) and the
height of the simulation box in the z direction (h = 2.30 nm) as
γxy =nb/h = 0.698, which is exactly the strain in Fig. 2A where
the stress is back to zero. If the applied strain was increased from
this point, the stress/strain curve would repeat itself periodically.
The capacity of the crystal to fully recover is due to the high
adaptability of the noncovalent, long-range interactions between
cellulose layers, which physically represent London dispersion
interactions.

Shear bands between cellulose layers also form when the crys-
tal is sheared in the xz plane. As seen in Fig. 2B, the yielding
process now involves three stress drops, which will be analyzed
from the atomic-scale structure of the crystals below. As illus-
trated in Fig. 2B, Inset and in Movie S2, two shear bands form
again and a perfect crystal is recovered when the sliding distance
between chains in the z direction reaches the crystal parameter
c. The corresponding strain is γxz = 2c/h = 0.9, which is again
the strain where in Fig. 2B the stress is exactly zero and a perfect
undeformed crystal is recovered.

Finally, shear elastoplasticity in the yz plane is more com-
plex and requires larger shear stresses. Here, in contrast with the
first two orientations, hydrogen bonds between cellulose chains
are involved. The stress–strain curve shown in Fig. 2C contains
both small and large stress drops. Large drops are connected to

A B C D

Fig. 1. Atomic structure of Iβ cellulose. From Left to Right, molecular chains are shown in the xy (A), xz (B), and yz (C) planes. The direction of the applied
shear strain is shown in each case. D is a 3D geometrical volume fitted on the cellulose chains to highlight their corrugation. Three-dimensional interactive
representations are shown in SI Appendix, Figs. S2 and S3. (The hydrogen atoms bonded to carbon atoms are not shown here.)
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Fig. 2. Shear deformation in different planes. (A–C) Shear stress–strain curves in the xy, xz, and yz planes. (D–F) Corresponding axial strains. Atomic-scale
deformation mechanisms are shown in Movies S1–S3. In A and B, Insets, the local coarse-grained shear strain is shown just after the first plastic event.

localized shear bands between cellulose ribbons, whereas smaller
drops are due to more localized irreversible events along the
molecules (see Related Atomic-Scale Mechanisms). Also, we see
in Fig. 2C that the first large yield event, which occurs at γyz ≈
0.25, is not equivalent to the following deformation cycles.

Related Atomic-Scale Mechanisms
We now investigate the atomic-scale origins of shear elastoplas-
ticity in cellulose crystals and consider first shear in the xy plane.
As shown in Fig. 1A, there are two crystallographically indepen-
dent chain types, the so-called corner and center chains. The
cellulose chains are not parallel to the y direction but are slightly
tilted around their helical axis with respective angles of ≈12◦

and ≈−16◦ (measured from the angles of the pyran mean planes
shown in Fig. 3A).

This misorientation induces steric effects that include a sliding
resistance between chains and the crystal expansion εxx seen in
Fig. 2D. In addition, as the sample is sheared, Fig. 3A and Movie
S4 show that center and corner chains tend to align, thus lead-
ing to a decrease of the interchain roughness: The center chain
angle increases to +7◦ while the corner chain angle decreases
to 9◦. These rotations occur during the stress plateau in Fig. 2A.
They cause a loss of the crystal stiffness and allow the layers to
slide more easily. Interestingly, if the deformation is reversed
at this stage (Fig. 3B), the chains rotate back and the stress–
strain curve is reversible within numerical accuracy, showing that
cellulose crystals behave as hyperelastic media up to the plastic
instability. At the end of the plateau, plastic deformation occurs.
The chains regain their initial environment, up to a rigid shift,
in a perfect crystal and the initial tilts are recovered, as seen in
Fig. 3A, Right.

To highlight the atomic-scale rearrangements in the xz plane,
we intentionally induced a single shear band in the crystal (see
SI Appendix, section S5 for details). The result is analyzed in
Fig. 4. To follow the motion of cellulose molecules, we use the
relative z position of a reference carbon atom in one glucose
residue of the top layer (C3T ) with respect to the two equiva-
lent carbon atoms (C31 and C32) in glucose units of the bottom
chain (see glucose molecule in SI Appendix, Fig. S1 for details).
Upon shear, the distance between the C3 atoms decreases (Fig.

4) until at γxz = 0.32, the upper C3T and the first lower C31

atoms are almost aligned vertically. This is an unstable position
of strong repulsion between layers, which reach a maximum sep-
aration (Fig. 2E). The separation is enhanced by the corrugated
shape of the cellulose chains in the z direction. Unloading the
crystal before this point is reversible as when shearing in the
xy plane (see Fig. 6C). Conversely, loading the crystal beyond

A

B

Fig. 3. Evolution of chain tilt angles in the xy plane as a function of shear
strain (A) and corresponding forward and reverse stress/strain curves (B).
Atomic-scale deformation is shown in Movie S4.
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Fig. 4. Relative position of the corrugated cellulose chains during shear in
the xz plane. The blue and black curves show the distance in the z direction
between a reference carbon atom in an upper chain, CT

3 , and two carbon
atoms, Ci

3 with i = 1, 2 in a lower chain. The stress–strain curve is in red.
Molecular-level deformation is shown in Movie S5.

the unstable position induces a first plastic event: Both rib-
bons slide discontinuously by about ∆d = 0.4 nm to reach a
new metastable position. The corresponding stress drop, ∆τxz ≈
0.38 GPa, can be calculated from the plastic strain generated
during the event, γpl

xz = ∆d/h , as ∆τxz =Gxzγ
pl
xz , where Gxz =

2.03 GPa is the shear modulus computed just after yield drop
(44). This first yield event is followed by a second elastic regime
(between γxz = 0.32 and 0.41) until C3T aligns with C32. Glu-
cose molecules again overlap, leading to a second yield event
similar to the first one. Finally, between γxz = 0.41 and 0.45, the
crystal is deformed elastically to recover its perfect undeformed
structure at γxz = 0.45. The sliding mechanism is further demon-
strated in Movie S5. Yielding in the xz plane therefore involves
two successive plastic events, which correspond to the successive
sliding of glucose molecules on top of each other. There are three
stress drops in Fig. 2B because two shear bands formed in this
case and while the first yield event occurred simultaneously in
both bands, the second did not, leading to two smaller drops.

Finally, when cellulose crystals are sheared in the yz plane,
Fig. 5A shows that the shear band is not flat, but zigzags between
cellulose ribbons, reflecting the staggered stacking of the cel-
lulose molecules in the x direction (Fig. 1 A and D). In this

situation, not only the wavy shape of cellulose chains and the
London dispersion interactions between molecules are involved,
but also hydrogen bonds between chains. These combined effects
probably result in the much larger ideal shear strength than with
previous orientations (Fig. 2C). Moreover, Fig. 5B shows the O5-
C5-C6-O6 dihedral angle of two sliding molecules, before and
after the first yield event. We see that the dihedral angle on the
top molecule flips from 157◦ to 63◦ during the plastic event, as
evidenced at the atomic scale in Fig. 5 C and D. This change of
conformation of the molecule affects the hydrogen bonds with
the lower glucose molecule in the shear band and allows for an
easier sliding, as attested by the lower stresses seen in Fig. 2C
after the first yield event. This dihedral rotation is also visible
in the work of Zhu et al. (8) but not mentioned. The mecha-
nism of breaking and reformation of hydrogen bonds between
the cellulose chains is further illustrated in Movie S6. Finally,
note that the yz shear induces a noticeable expansion strain εxx
perpendicular to the cellulose layers, as large as εyy (Fig. 2F).
Such strain again results from the relative motion of the cellu-
lose chains, which have a corrugated shape along this direction
(Fig. 1B).

Effect of Dislocations
So far, we have considered perfect cellulose crystals. However,
cellulose microfibrils are grown from natural processes and the
crystals are expected to contain atomic-scale defects, such as
vacancies and dislocations, although the latter are difficult to
observe experimentally. As a first approach to study the impact of
defects on the mechanics of cellulose crystals, we consider here
dislocations in the xz plane because they induce sliding of cellu-
lose layers along their long axis, which is the major deformation
mode involved in the formation of kinks on CNs (18).

As proposed for metallic crystals (45), we introduced two edge
dislocations between cellulose layers in the xz plane to form a
dipole with opposite c Burgers vectors, as sketched in Fig. 6A. In
Fig. 6B, Insets show that around the dislocations, cellulose chains
are deformed from a large corrugation in the compressive side of
the extra half plane of the dislocations to an almost flat state in
the tension side.

When shearing the dislocated crystal (Fig. 6C), we find first
that the dislocations do not alter the initial linear elastic regime.
The dislocations start to glide and induce plastic deformation
at a critical stress, which we call Peierls stress in analogy with
metallic crystals (46), of about 0.29 GPa, i.e., much lower than
the ideal shear strength (0.48 GPa). The crystal deformation
then occurs at constant stress, in contrast with the marked stress
drops seen with perfect crystals. As shown in SI Appendix, Fig.
S8, the crystal deformation is localized in the dislocation planes,
and as in metallic crystals (46), dislocation motion requires only
local rearrangements and therefore less stress than shearing two

Fig. 5. (A) Coarse-grained shear strain map in projection perpendicular to the shear direction (in the xy plane) with a 3D sketch of the molecular structure
and orientation of the applied shear strain. (B) O5-C5-C6-O6 dihedral angles of the chains shown in C and D in the shear band as a function of applied
deformation. (C and D) Local atomic structure before (C) and after (D) the first large stress drop.

4 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1800098115 Molnár et al.

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1800098115/video-5
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1800098115/video-5
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1800098115/video-6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1800098115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1800098115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1800098115


EN
G

IN
EE

RI
N

G

A B C

Fig. 6. Shear in the xz plane in the presence of two edge dislocations forming a dipole. A schematic representation of the dislocated crystal is shown in
A, and details of the molecular structure near and far from a dislocation core are shown in B. The resulting stress–strain curve is compared with that of a
perfect crystal in C.

entire adjacent layers. In addition, most of the lattice changes are
located in the vicinity of the dislocations, thus reducing the over-
all volume change of the crystal down to 0.8% for the present
dislocated crystal configuration and size. Finally, while in perfect
crystals the behavior is fully reversible up to the first stress drop,
we see in Fig. 6C that unloading the dislocated crystals leads
to noticeable plastic strains as soon as the linear elastic domain
ends, a consequence of irreversibility of dislocation glide.

Concluding Remarks
Enhancing our knowledge on the mechanics of CNs is essential
before we can use them as building blocks in structural materials.
This is crucial beyond the elastic domain where the literature is
still scarce. To that end, we focused on the bulk shear plasticity
of Iβ cellulose crystals. In response to the questions listed in the
Introduction, we state the following:

i) Stress–strain response: Shearing perfect crystals beyond lin-
ear elasticity is highly nonlinear and anisotropic. The crystal
response is composed of periodic sequences of hyperelas-
tic branches followed by abrupt plastic events. The asso-
ciated ideal shear stresses, in the range of 0.4–1.65 GPa,
are lower than the ultimate tensile strengths reported previ-
ously (4, 30). Thus, as for elasticity, shear plasticity should
be a preferred deformation mode in many situations. In
addition, shear ductility is not limited because interchain
interactions can reform after a shear event while they can-
not when broken in tension (30). Such ductility may be one
of the sources of toughness of CN-based materials such as
nanopapers (8).

ii) Nanoscale deformation mechanisms: Shear plasticity pro-
ceeds by shear bands between cellulose layers, along with
noticeable dilatancy. Zooming in at the atomic scale showed
that, while continuously breaking and reforming, hydrogen
bonds and London dispersion forces contribute very effi-
ciently to the crystal shear strength and ductility. The role
of hydrogen bonds was recently highlighted for shear in the
yz plane (8), while that of London dispersion forces has so
far been largely overlooked in cellulose (47). Also, we found
that the layered and staggered architecture of the cellulose
chains, as well as their internal deformation, are paramount
for the crystal plasticity and related dilatancy.

iii) Effect of crystal defects: Although their occurrence still
needs to be confirmed experimentally, we demonstrated the
drastic changes induced by defects like dislocations. Dislo-
cated cellulose exhibits an elastoplastic behavior similar to
that of metallic crystals, with a short linear elastic domain
and lower flow stress and volume variation, without abrupt
stress drops.

Obviously, additional investigations are needed to better
understand the plasticity of CNs. Among them, the effect of the
crystal finite size and environment should be further examined
to unveil size and surface effects. Anyway, results presented in
the literature in tension (30) and in this work in shear already
constitute a suitable base to build beam models (43) for the bulk
mechanics of CNs beyond elasticity in the context of a multiscale
approach.

Materials and Methods
Initial Structure. The simulations were performed using the GROMACS pack-
age version 5.1. (48), a modified Gromos 56Acarbo force field (33, 34)
(see SI Appendix, section S2 for details on the choice of force field),
and periodic boundary conditions. Iβ cellulose crystals were generated
from the atomic structure measured experimentally (20). Water was not
considered here since it does not penetrate in cellulose crystals (49).
Molecular dynamics simulations at 300 K were used to equilibrate the
samples, first at constant volume for 1 ns and then at constant pressure
(1 bar) for another 1 ns. The samples were then quenched at ambient
pressure to 0 K and relaxed with conjugate gradient to produce equi-
librium configurations. The final unit cell has dimensions a = 0.7681 nm,
b = 0.8027 nm, c = 1.0387 nm, α= βu 90◦, and γ= 92.8◦. The simulated
crystals were mainly made of 3a× 55b× 44c unit cells and contained 3,360
atoms. We checked that results did not depend on the cell size (see SI
Appendix, section S4 for details). The dislocated crystals were larger, 32a×
55b× 1,616c, with about 150,000 atoms (see SI Appendix, section S6 for
details).

Deformation. Iβ cellulose crystals were deformed quasi-statically using
molecular mechanics. At each deformation step, the simulation cell was
sheared, with the atomic positions rescaled homogeneously, and a new
equilibrium configuration was obtained by a conjugate gradient energy
minimization. The incremental shear strain δγ was set to 10−3, as detailed in
ref. 50. The shear deformations were applied at zero normal stresses. Hence,
tensile stresses induced during each shear step were relaxed by changing the
cell dimensions based on the elastic stiffnesses of the crystals. If the resulting
tensile stresses remained larger than 0.03 GPa (which occurred only after
large shear stress drops), the normal stresses were relaxed to zero using
a barostat before a new shear increment was applied. Finally, to produce
continuous strain fields after the simulations, a coarse-graining represen-
tation was used: Atomic displacements were convoluted with a Gaussian
function of width 0.3 nm, as detailed in SI Appendix, section S3 and in ref.
51. The quantitative values of the local strain field depend on the coarse-
graining width, but not the localization patterns seen in Figs. 2 and 5.
The effect of the coarse-graining width is further analyzed in SI Appendix,
section S3.
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