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A B S T R A C T

In order to model brittle fracture, we have implemented a two and three dimensional phase-field method in the
commercial finite element code Abaqus/Standard. The method is based on the rate-independent variational
principle of diffuse fracture. The phase-field is a scalar variable between 0 and 1 which connects broken and
unbroken regions. If its value reaches one the material is fully broken, thus both its stiffness and stress are
reduced to zero. The elastic displacement and the fracture problem are decoupled and solved separately as a
staggered solution.

The approach does not need predefined cracks and it can simulate curvilinear fracture paths, branching and
even crack coalescence. Several examples are provided to explain the advantages and disadvantages of the
method. The provided source codes and the tutorials make it easy for practicing engineers and scientists to
model diffuse crack propagation in a familiar computational environment.

1. Introduction

Fracture is one of the main failure modes for engineering materials.
However, most of the time design codes apply large safety factors to
avoid its manifestation. Additionally, to the devastating consequence of
a brittle failure, their evolution is difficult to study in practice.
Therefore, predicting the initiation and the propagation path of a
fracture is of great importance for practicing engineers and scientists.

The original theory to understand brittle crack evolution was
introduced first by Griffith [1], then a new metric, called the stress
intensity factor, was proposed by Irwin [2] to account for the micro-
scopic plasticity near the crack tip, even for macroscopically brittle
materials [3,4]. They considered crack propagation as a stability
problem: if the energy release rate reaches a critical value, the crack
is able to open. The original theory describes crack propagation
adequately, but it is insufficient to account for initiation, curvilinear
crack paths, benching or coalescence.

Nowadays several methods are available to model crack propaga-
tion in solids. These methods can be categorized into two major groups
depending on how they account for the supposed discontinuity:
discrete or diffuse. Using discrete methods, such as node splitting
[5], cohesive surfaces [6], hybrid discrete and finite element methods
[7], the crack can only propagate between elements, therefore its path
is strongly mesh dependent. This problem was overcome by the group

of Belytschko [8,9] using a local enrichment in the shape functions of a
finite elements (XFEM), as well as by Grüses and Miehe [10] with a
configurational-force-driven sharp fracture front.

The second group of fracture modeling assumes that the disconti-
nuity in the material is not sharp, but can be interpreted as a smeared
damage. This theory led to the development of the phase-field model
[11,12]. This way, the weakness of the original approach of Griffith can
be overcome by a variational approach based on energy minimization,
as proposed by several authors [13–17]. These approaches introduce a
regularized sharp crack taken into account by an auxiliary scalar
damage variable. This variable is considered as a phase-field establish-
ing the connection between intact and broken materials.

Over almost a decade this method has gained significant visibility
due to its flexible implementation. Besides the work of Msekh et al.
[18], mostly in-house softwares were developed to model fracture with
phase-fields. Unfortunately, the aforementioned paper neglects to
reproduce the results of most of the previous implementations [12],
and its source code is not available.

In this paper we give a fully functional implementation as an
Abaqus/Standard UEL [19] of the phase-field model [20] to study the
quasi-static evolution of brittle fracture in elastic solids. Additionally,
as a Supplementary material the source code for the UEL and several
examples are provided. Our purpose is to make the diffuse crack
propagation scheme widely available not only for numerical scientists,
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but for practical applications and design engineers as well.
Furthermore, the provided source codes can be easily developed to

account for dynamical effects [21], large deformations [22], path-
following [23] or multi-physics problems [24,25]. One of the major
advantage of present implementation, is that no additional updates and
softwares are necessary, but only the widely available Abaqus/Standard
[19] package and a FORTRAN compiler. It can fit into any existing
platform and can be parallelized easily.

The quasi-static simulation of brittle fracture phase-field problem is
solved using a staggered algorithm [20]. This approach decouples the
elastic and the fracture problem. The strategy has proven to been
computationally efficient and extremely robust. However, to reach an
accurate solution the step size should be chosen carefully.

Our results compare favorably with the originally developed algo-
rithm [20], as well as with other methods. We provide several examples
both with the Abaqus input and FORTRAN files for better under-
standing and further development. The implementation contains 2D
plane strain and 3D cases as well.

The paper is structured as follows. In Section 2 the difference
between sharp and diffuse (phase-field) crack is explained. Then the
coupling between the elastic solution and the phase-field problem is
unfolded. Finally the staggered solution and its finite element imple-
mentation are given. Section 3 gives numerous examples and bench-
mark tests to validate and understand the simulation process. We also
highlight the effect of most of the numerical parameters, such as the
time step, length scale parameter or even mesh density. Finally in
Appendix B a detailed description is given to guide the users in the
development of their own models.

2. Methods

2.1. Phase field approximation of diffuse crack topology

To introduce the concept of a diffuse crack topology, let us consider
an infinite one directional bar aligned along the x axis with a cross
section Γ (see Fig. 1a). Let us assume a fully opened crack at x=0. If
function d(x) describes the damage, a sharp crack shown in Fig. 1b is a
Dirac delta function. Its value is zero everywhere except at x=0, where

d (0) = 1. Variable d(x) is the crack phase-field function. If its value is
zero, the material in unbroken, if its value reaches 1, it is fully broken.

Following the idea that the crack itself is not a discrete phenom-
enon, but initiates with micro-cracks and nano-voids, we introduce an
exponential function to approximate the non-smooth crack topology:

d x e( ) = ,x l− / c (1)

where lc is the length scale parameter and d(x) represents the
regularized or diffuse crack topology. Basically, with this idea the
sharp crack is diffused as shown in Fig. 1c. By l → 0c the sharp case is
recovered. Function (1) has the property d (0) = 1 and at the limits
d ( ± ∞) = 0.

It is the solution for the homogeneous differential equation [12]:

d x l d x Ω( ) − ″( ) = 0 in ,c
2 (2)

subject to the Dirichlet-type boundary condition shown above. The
variational principle of strong form (2) can be written as:

⎧⎨⎩
⎫⎬⎭d I d= Arg inf ( ) ,

d W∈ (3)

where

∫I d d l d dV( ) = 1
2

( + ′ ) ,
Ω

c
2 2 2

(4)

and W d d d= { | (0) = 0, ( ± ∞) = 0}. Now observe that the integration
over volume dV Γdx= gives I d e l Γ( = ) =x l

c
− / c . Thus, the fracture

surface is related to the crack length parameter. As a consequence,
we may introduce a fracture surface density with the help of the phase-
field function by:

∫ ∫Γ d
l

I d
l

d l d dV γ d d dV( ) = 1 ( ) = 1
2

( + ′ ) = ( , ′) ,
c c Ω

c
Ω

2 2 2
(5)

where γ d d( , ′) is the crack surface density function in 1D. Similarly, in
multiple dimensions it can be expressed as:

γ d d
l

d l d( , ∇ ) = 1
2

+
2

∇ .
c

c2 2
(6)

It can be seen that the gradient of the phase-field plays a significant
role in the description.

2.2. Strain energy degradation in the fracturing solid

To couple the fracture phase-field with the deformation problem,
we can write the potential energy of a solid body as:

Π E d W du= ( , ) + ( ),int (7)

where E du( , ) is the strain andW d( ) is the fracture energy. Let Ω ⊂ δ,
be the reference configuration of a material body with dimension
δ ∈ [1 − 3], and Ω∂ ⊂ δ−1 its surface. The crack and the displacement
field is studied in the range of time T ⊂ . Consequently we can
introduce the time dependent crack phase-field:

⎧⎨⎩d Ω T
t d tx x: × → [0, 1]

( , ) → ( , ). (8)

and the displacement field:

⎧⎨⎩
Ω T

t tu x u x: × →
( , ) → ( , ).

δ

(9)

In Eq. (7), the internal potential can be written:

∫ εE d ψ d dVu u( , ) = ( ( ), ) ,
Ω (10)

where εψ d( , ) is the potential energy density:

ε εψ d g d ψ( , ) = ( )· ( ).0 (11)

εψ ( )0 is the elastic strain energy and g d( ) is a parabolic degradation

Fig. 1. (a) 1D bar with a crack at the middle with the cross section Γ. (b) Phase-field for
sharp crack at x=0. (c) Diffuse crack at x=0 modeled with function (1) and length scale
parameter lc.
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function: g d d k( ) = (1 − ) +2 and k is a small number responsible for
the stability of the solution [12]. In this work we do not consider
anisotropic energy degradation [12] (or sometimes refereed to as
asymmetric tension and compression energy release), because the
examples are primarily tensile stress dominant and no crack closure
is modeled. However, there are several methods, which can be used to
develop the provided source codes to take the positive (tensile) and
negative (compression) energy into account. One of the first study,
which decomposed the potential energy into two parts was published
by Miehe et al. [12]. After the spectral decomposition of the strain
tensor [26], they have assumed that the positive eigenvalues (with the
corresponding basis) contribute to the tensile energy as the negative
ones to the compression energy. The greatest disadvantage of this
approach is that due to the asymmetric degradation (history effect) in
the energies, the summation of the positive and negative part creates
an unsymmetrical stiffness matrix, which is computationally much
more expensive than a symmetric one. Moës et al. [27] proposed a
different decomposition, which results in symmetrical constitutive
relations. However, the stiffness tensor is still dependent upon the
spectral decomposition and thus upon the applied strain. This causes
the initially linear problem to become highly non-linear. To overcome
this problem, a Newton-type solver with a constant tangent matrix
during the same load step can be helpful. In this paper our aim is to
give a clear and transparent code which can then be developed either
with anisotropic energy degradation [12], dynamic fracture [21] or
crack tip enrichment [23], therefore mostly isotropic energy degrada-
tion is considered.

Assuming linear elasticity in the unbroken solid, the elastic energy
density can be calculated as follows:

ε ε εψ C( ) = 1
2

,T
00 (12)

where C0 is the materials linear elastic stiffness matrix (in Voigt
notation), and ε if the vector containing the strain components. It is
calculated using small strain theory: ε u u= [(∇ ) + ∇ ]T1

2 , where u is the
vector of displacements.

Due to damage, the elastic energy is degraded with function g d( ).
By calculating its first derivative with respect to the strain tensor
(Cauchy stress):

σ σ σ εg d d k d k C= ( )· = [(1 − ) + ]· = [(1 − ) + ]· .0
2

0
2

0 (13)

it can be seen, that similarly to the energy, g d( ) has a direct effect on it
as well. Finally the same can be written for the stiffness:

g dC C= ( )· .0 (14)

As a result, it is clear that the damage variable, represented by the
phase-field, directly affects the stress and the stiffness of the material. If
its value reaches one, no stress or stiffness will be found in the element.

The second term in Eq. (7) stands for the energy due to fracture and
can be calculated as:

∫W d g γ d d dV( ) = ( , ∇ )
Ω

c (15)

where W is the sum of all the fracture surfaces multiplied by gc, the
critical energy release rate.

After the internal potential energy, the external component can also
be formulated as follows:

∫ ∫γΠ P dV dAu u t u= ( ) = · + ·
Ω Ω

ext
∂ (16)

where γ and t are respectively the prescribed volume and boundary
forces.

2.3. Staggered solution for phase-field fracture

For problems, where unstable crack propagation is present the
static monolithic solution [12] tends to become numerically unstable as

well. When the crack starts to propagate, due to the newly degraded
stiffness matrix, the internal stress field rearranges [20,23] and the
implicit solver stumbles to find a stable equilibrium solution.

In order to have a stable implicit formulation the solution is
decoupled as follows.

The schematic illustration of the split scheme is shown in Fig. 2.
The problem can be split into two quasi independent minimization
procedures. First we can write the functional to solve the fracture
topology:

∫Π Π g γ d d d H dV≃ = [ ( , ∇ ) + (1 − ) ]d
Ω

c
int 2

(17)

where we use a so-called history variable:

⎧⎨⎩
ε ε

H
ψ ψ H
H

=
( ) if ( ) >

otherwise,
n

n

0 0

(18)

where Hn is the previously calculated energy history at step n. This
field weakly couples the displacement and phase-field. Furthermore it
enforces the irreversibility of the damage (ḋ ≥ 0). Thus, the history
field satisfies the Karush–Kuhn–Tucker conditions [23]:

ψ H H H ψ H− ≤ 0, ˙ ≥ 0, ˙ ( − ) = 0,0 0 (19)

both for loading and unloading, therefore no penalty term is necessary
in contrast to the monolithic scheme [12].

Then with a fixed d, the displacement field is calculated:

∫ ∫γE d Π Π ψ d dV dAu u u t u( , ) − ≃ = [ ( , ) − · ] − ·u
Ω Ω

ext
∂ (20)

By taking the variation of both energies (δΠ = 0d , δΠ = 0u ), the
corresponding Eulerian equations can be written (strong form) for the
displacement:

σ γ
σ
δΠ δ Ω

Γ
Γ

u
n t

u u

= 0 ∀ → ∇ − = 0 in
· = on
= on ,

u

N

D (21)

and phase-field problems:

δΠ δd d l d d H Ω

d Γn

= 0 ∀ → ( − Δ ) = 2(1 − ) in

∇ · = 0 in ,

d g
l c

2c
c

(22)

where σ is the Cauchy stress tensor.
Further information about the mathematical theory on the mono-

lithic [12] and decoupled [20] problems can be found in previous works

Fig. 2. Illustration of the split scheme phase-field problem in elastic solids.
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of Miehe et al.

2.4. Finite element discretization in Abaqus/UEL

The staggered method is implemented in an Abaqus user defined
element (UEL). Using a split scheme operator, the former two
minimization problems are solved separately.

Based on the quantities at time tn (e.g. energy history), a new
phase-field is calculated at tn+1:

⎧⎨⎩
⎫⎬⎭∫d g γ d d d H dV= Arg inf [ ( , ∇ ) + (1 − ) ] ,n

d Ω
c+1

2

(23)

where the history field (H) is calculated according to Eq. (18). With a
Newton-Raphson nonlinear solver, the associated linear equation can
be solved in close form [20]:

K d r= − ,n
d

n n
d

+1 (24)

where dn+1 is the unknown vector containing the new phase-field values
of each integration point. rn

d is the residue and Kn
d is the tangent

stiffness at time tn.
To calculate the displacement field at tn+1 the phase-field value is

used from time tn:

⎧⎨⎩
⎫⎬⎭∫ ∫γu ψ d dV dAu u t u= Arg inf [ ( , ) − · ] − · .n

u Ω
n

Ω
+1

∂ (25)

In Eq. (25) γ , t and u are the prescribed Neumann and Dirichlet
boundaries at time tn+1. Similarly to the phase-field, this problem can
also be solved by a simple linearization:

K u r= − .n
u

n n
u

+1 (26)

All the corresponding residue vectors and stiffness matrices can be
found in Appendix A.

To implement the solution in Abaqus two element types are used in
a layered manner. Each layer connects at the same nodes, but
contributes to the stiffness of different degrees of freedom (DOF). A
schematic illustration is depicted in Fig. 3. The first element type has
only one DOF (phase-field). The second element type (displacement)
contributes to two or three DOF (translational) depending on the
dimensionality. In all cases isoparametric elements are used with 4
nodes (2D) and 8 nodes (3D).

In order to visualize the calculated quantities in Abaqus a third
layer is added with infinitesimally small stiffness made from a UMAT
(user defined material model) [18]. It is used to transfer information

from the common block and interpolate between integration points. The
internal variables are summarized in Table 1 for both 2D plane strain
and 3D elements.

The staggered scheme is implemented so that the two elements are
connected through only the common block, thus with a Newton-
Raphson method the following equation system is solved iteratively:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

K 0
0 K

d
u

r
r

= −n
d

n
u

n
n

n
d

n
u

+1
+1 (27)

In the first iteration at every load step the history and the phase-
field is updated for the phase- and displacement field elements. The
phase-field problem is solved based on (H ψ=n n+1 0, ), and displacement
is based on the phase-field value taken from the end of the previous
step (dn). In Fig. 4 a flowchart shows the basic iteration process.

This solution is slightly different from the staggered scheme
proposed by Miehe et al. [20], however it slows down and stabilizes
the crack propagation even further. Additional comparison will be
given later.

Based on a simple example, Appendix B gives a detailed explanation
on how to develop and post-process a model using the newly provided
UEL.

3. Benchmark tests and numerical examples

Starting with the simplest case where we compare different
methods for one element (analytic, monolithic, staggered), more and
more complex cases are introduced. Finally a 3D single notch mode I
specimen ends the section. In all cases the relevant numerical para-
meters are summarized, then the results are shown and interpreted. In
all 2D (plane strain) cases the thickness of the element is 1 mm. The
mesh is densified where the crack is expected to propagate, the size is
specified in the text and the mesh is shown in some of the figures.

Fig. 3. 2D representation of three layered finite element structure in Abaqus. All nodes
have three degrees of freedom (DOF). The first element contributes to the stiffness of the
3rd, the second element to the 1st and 2nd DOF. For post processing purposes a third
layer is included made as a UMAT model, which allows to display state dependent
variables (SDVs), where the properties are updated from the other two elements. The
same approach is applied for the 3D element: the phase-field element has one, and the
displacement layer has 3 DOF.

Table 1
Solution dependent variables used to plot the results in two and three dimensions.

Variable Number of SDV in Abaqus

2D (x y, ) 3D (x y z, , )

Displacement (stress-strain) element
Displacement – u u u, ,x y z SDV1-SDV2 SDV1-SDV3

Axial strains – ϵ , ϵ , ϵx y z SDV3-SDV4 SDV4-SDV6

Engineering shear strain – γ γ γ, ,xy xz yz SDV5 SDV7-SDV9

Axial stress – σ σ σ, ,x y z SDV6-SDV7 SDV10-SDV12

Shear stress – τ τ τ, ,xy xz yz SDV8 SDV13-SDV15

Elastic axial stress – σ σ σ, ,x y z,0 ,0 ,0 SDV9-SDV10 SDV16-SDV18

Elastic shear stress – τ τ τ, ,xy xz yz,0 ,0 ,0 SDV11 SDV19-SDV21

Strain energy – ψ SDV12 SDV22
Elastic strain energy – ψ0 SDV13 SDV23
Phase-field – d SDV14 SDV24

Phase-field element
Phase-field – d SDV15 SDV25
History field – H SDV16 SDV26

Fig. 4. Flowchart of the staggered solution used to implement the coupled displacement-
phase-field solution in Abaqus.
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According to the results of Miehe et al. [12] the length scale parameter
(lc) is always taken two times larger than the smallest element around
the crack path.

3.1. One element

One 2D plane strain element is the simplest case, where the phase-
field model can be understood. In Fig. 5 the boundary conditions and
the geometry are shown. The dimensions of the element are 1×1 mm in
both x and y direction. The bottom nodes are constrained in both
directions, whereas we allow the top nodes to slide vertically.

The Young's modulus of the specimen is set to E=210 kN/mm2 and
the Poisson's ratio to ν = 0.3. The critical energy release rate is
g = 5·10c

−3 kN/mm and the length scale parameter is lc=0.1 mm. It
needs to be noted that we violate our initial criteria concerning the
relationship between the mesh size and lc, thus the theoretical fracture
surface in not recovered adequately. Nevertheless, in this section it is
not our aim to show actual fracture patterns, only the elementary
solution of Eqs. (23) and (25). The deformation is applied in

u1000 × Δ y steps, where uΔ = 10y
−4 mm steps.

The input as well as the source file is available for this example in
the first Supplementary directory. The practical details are discussed in
Appendix B.

The problem introduced in this section can be solved analytically.
Due to the discretization the gradient in the crack surface vanishes
( d∇ = 0) in Eq. (23). Therefore, if a simple well determined deforma-
tion scheme is assumed: ϵ ≠ 0y , τϵ = = 0x xy , the stresses and the elastic
potential energy can be calculated directly: σ c= ϵy y,0 22 , where c22 is the

(2,2) element of the plane strain stiffness matrix: c = E ν
ν ν22
(1 − )

(1 + )(1 − 2 ) . And

finally the elastic energy can be calculated as: ψ ε c= /2y0
2

22 .

Solving the minimization problem shown in Eq. (23) for one
element, and assuming a direct coupling between displacement and
phase-fields (H ψ= 0) we can show that the damage parameter results
in:

d H
H

ψ
ψ

ε c
ε c

= 2
+ 2

=
2
+ 2

=
+

.g
l

g
l

g
l

0

0

2
22
2

22
c
c

c
c

c
c (28)

As well as the y directional axial stress: σ σ d= (1 − )y y,0
2.

Fig. 5a shows the axial stress computed by analytical, monolithic
(concerning implementation details can be found in Ref. [23]), and two
staggered schemes.1 A very good agreement can be found between
methods. Also the black line shows that after a certain damage not just
stresses (as shown in Eq. (13)), but also the stiffness is degraded:
C Cd= (1 − ) ·2

0.
Quantitative comparison between the analytically calculated stres-

ses and the numerical results are shown in Fig. 5b. It can be seen that
the monolithic solution almost perfectly recovers the analytic solution,
whereas the staggered schemes accumulate a small sum of error. This
solution compared to Miehe's work [20] shows two times larger error,
because the variables are updated only at each time step. In the work of
Miehe et al. [20] the displacement field is calculated based on the
already determined phase-field. Unfortunately, in Abaqus the two
degrees of freedom cannot be isolated and solved separately. Despite
the observed difference the error is vary small and by reducing the time
step, it can be eliminated. Therefore, we conclude that both staggered
schemes carry the same disadvantage. The error caused by the
deviation can be neglected with respect to the incredible robustness
gained by the methods [23,20].

Stability problems appear in the monolithic solution, when the
crack starts to propagate and due to the quick stiffness and stress
reduction in a small amount of elements, the initial prediction soon
differs markedly from the solution. Due to the abrupt change in the
stiffness the stress needs to redistribute, and the Newton-Raphson
method needs a significant amount of internal iterations to converge.
Of course due to the fact that in a one element model, no stress
redistribution appears, we do not have any stability problem.

Finally, Fig. 5c shows the governing phase-field as a function of the
applied axial strain. It can be observed that the staggered algorithm
satisfies the irreversibility criterion (ḋ ≥ 0) without any Penalty para-
meter as used in the monolithic scheme [12].

3.2. Single edge notched test

Our second benchmark test is the well known single edge notched
tensile and shear sample. The geometry and the boundary conditions
are depicted in Fig. 6a. The bottom side of the rectangular specimen is
fixed, while the top side is moved. The stiffness is set to: E=210 kN/
mm2 and ν = 0.3. Fracture properties are taken identical to Ref. [20]
for direct comparison: l = 0.0075 mmc , g = 2.7·10c

−3 kN/mm.
The finite element mesh of ≈22, 000 elements is used. The region

around the crack path is refined in order to reach the maximum of
h=0.001 mm mesh size.

Tensile loading is applied by uΔ = 10−4 mm for 500 steps, then
uΔ = 10−5 mm to precisely follow the overall propagation. While the

shear deformation was applied in uΔ = 10−4 mm for 1000 steps. Then
the step size was reduced similarly to the tensile case to uΔ = 10−5 mm.
The change in the step size is applied to be consistent with the results of
Miehe et al. [12,20].

The fracture pattern for the two limit cases are shown in Fig. 6b and
c. While for the tensile case (α = 90°), the crack is horizontal, for the
pure shear case we see a curved crack path initiating with a β = 61°
angle from the direction of the deformation. The crack pattern is in
agreement with both works of Miehe et al. [12,20]. As well as by

Fig. 5. (a) Axial stress as a function of axial strain for one element subjected to uniaxial
tension. (b) Difference between numerically calculated and analytic stress results. (c)
Damage phase-field as a function of applied axial strain.

1 Due to lack of available space the concerning line colors are shown in Fig. 5c.
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gradually changing α a linear transition is observed in β. There is
excellent agreement with the work of Bourdin et al. [16] as shown in
Fig. 6d.

In Fig. 7a the y directional reaction force is shown for the tensile
specimens for different length scale parameters (lc) along with previous
results by Miehe et al. [12,20] are shown next to our results. It can be
seen that the maximum reaction force value is in agreement, only a
small deviation in the propagation period can be observed. Similarly, as
it is shown between the monolithic [12] and staggered scheme [20], the
crack propagation calculated by our solution is slowed down ever
further. This result causes no problem, because these implicit methods
carry no dynamic meaning (due to lack of mass [21]). Additionally, as
will be discussed later, by reducing the time step the solution converges
to the monolithic one.

Due to the large size of the input files only a smaller tensile test with
≈4000 elements (h=0.005 mm) is included as Supplementary material
in the second folder.

3.3. Symmetric double notched tensile test

Using a double notched specimen shown in Fig. 8a we have studied
the effect of load step and finite element size. The following material
properties are used: E=210 kN/mm2, ν = 0.3, l = 0.0075 mmc ,
g = 2.7·10c

−3 kN/mm.
The sample is meshed randomly with a refined zone at the middle

(for details see Fig. 9a and b). The crack edges and the dotted line are
meshed with h, while the dashed lines with h10 size finite elements.
The transition between the different zones are linear. The deformation

is applied with a constant rate using uΔ = 10−6 mm steps.
In Fig. 9c the reaction force is shown as a function of the

displacement. While Fig. 9 part d shows the maximum force as a
function h. It can be seen that there are cases (shown with crosses)
which do not fracture until u=0.01 mm, therefore the maximum
reaction force cannot be defined. However, if the mesh is densified a
gradual convergence appears. Red dashed line shows the value of l /2c ,
which was suggested as a minimum elements size by Miehe et al. [12].
According to their analysis, this is the value, where the spatial
integration of the damage variable recovers sufficiently the analytic
fracture surface. The choice of the length scale parameter was arbitrary
in this case. However, in real materials the crack propagation phenom-
enon can be understood as multi-scale damage. In most of the
materials (e.g. bone [28], glasses [29] or even metals [30]) the crack
front is not precisely identifiable. Therefor, it could be possible to
define a damage length scale parameter as a real material property.
However, this topic exceeds the aim of present paper.

The time step has also a significant effect on not only the stress
field, but the governing crack pattern as well. Fig. 8b shows the effect of
the random, consequently unsymmetrical mesh. If the time step is not
small enough, the crack appears symmetrically. However, after redu-
cing the load increment – due to the random mesh – more potential
energy gathers at one side, initiating the crack faster at that notch.

The deviation due to too large load steps is visible in the reaction

Fig. 6. (a) Geometry and boundary conditions of single edge notched specimen. (b) Fracture pattern for unidirectional tension (α = 90°). (c) Fracture pattern for pure shear deformation
(α = 0°). (d) Crack angle (β) as a function of loading direction (α) with linear fit and the work of Bourdin et al. [16] (variational model).

Fig. 7. Reaction force for the uniaxial tensile test using different length scale parameters
(lc) along with results by Miehe et al. [12,20] (symbols).

Fig. 8. (a) Geometry and boundary conditions for the double notched specimen. (b)
Fracture pattern with uΔ = 10−4 mm. (c) Fracture pattern with uΔ = 10−5 mm.
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force diagram. Thanks to the robustness of the solution, the Newton-
Raphson solver always finds a local equilibrium, however the precision
of the solution remains questionable. In Fig. 10a and b it can be seen
that the maximum reaction force depends strongly on uΔ . By reducing

uΔ , the maximum reaction force reduces as well. When the load step is
small enough ( uΔ = 10−5 mm) a convergence is observed.

Another interesting test can be conducted by deforming the sample
until u=0.008 mm (under 0.8 s pseudo time), and then stopping the
displacement but continuing the calculation. Fig. 10c shows the
reaction force for a sample which was deformed using uΔ = 10−5 mm
displacement steps ( tΔ = 10−3 s time steps) until u=0.008 mm, then the
top displacement was frozen but the iteration was continued. An
interesting creep like phenomenon can be observed. Even with the
static scheme if the crack propagation is unstable, the method can find
the fully opened crack state. Furthermore, it is interesting to see, that if
the time step is varied the pseudo dynamics of the crack is different. In
Fig. 10c we plotted the reaction force for different time steps. If tΔ was
left 10−3 s the crack finished propagating the same time, as when the
top side was moved (t ≈ 0.84 s). But if the step size was reduced, the
crack accelerated.

One of the disadvantages of the decoupled solution, is that the
amount of “staggering” affects the time dependent response signifi-
cantly. Therefore, it is highly recommended to conduct a sensitivity
study when developing a new model. The symmetric double notch
model is included as a Supplementary file in the third directory.

3.4. Asymmetric double notched tensile specimen

After the simple cases we are going to present a few complex ones to
show the utility of the new implementation. To study the coalescence of
the cracks a well studied [31,32] asymmetric double notch specimen is
used. The exact geometry is depicted in Fig. 11a. The following material
properties are used: E=210 kN/mm2, ν = 0.3, l = 0.2 mmc ,
g = 2.7·10c

−3 kN/mm. The mesh is well refined and contains ≈38, 000
elements, with the size of h=0.1 mm around the crack path. The tensile
deformation is applied by uΔ = 10−4 mm for 400 steps, then

uΔ = 10−5 mm for the rest of the simulation to follow precisely the
governing fracture pattern.

The appearing fracture pattern is shown in Fig. 11b.
The eventually obtained fracture pattern is in excellent agreement

with previous results [27,31,32].

3.5. Notched bi-material tensile test

This case study is a tensile specimen made of two materials. The
upper material is stiffer and its fracture toughness if higher
(E=377 kN/mm2, ν = 0.3, l = 0.3 mmc , gc=0.01 kN/mm), whereas the
lower material is 10 times softer (E=37.7 kN/mm2, ν = 0.3,
l = 0.3 mmc , gc=0.001 kN/mm) and has an initial notch. The specimen
is tensioned parallel to the separating line. The geometry and boundary
conditions are shown in Fig. 12a.

Fig. 9. (a) Schematic illustration of mesh seed distribution. (b) Finite element mesh for h=0.001 mm. (c) Reaction force as a function of displacement. (d) Maximum reaction force as a
function of mesh size (h) (next to each data point the approximate amount of finite elements are plotted; “k” stands for thousand). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).

Fig. 10. Reaction force as a function of displacement: (a) different uΔ ; (b) maximum force as a function of uΔ ; (c) deformation stopped at u=0.008 mm with uΔ = 10−5 mm and the
calculation is continued with different time steps.
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The model consists of ≈15, 000 elements, with a refinement of
h=0.1 mm. The deformation is applied by uΔ = 10−4 mm for 400 steps,
then uΔ = 10−5 mm for the rest of the simulation.

The aim of this benchmark test is to show that our implementation
is capable of modeling the crack branching phenomenon.

The reaction force is shown in Fig. 12b. It can be recognized that
mostly the loading is carried by the hard material, therefore when the
fracture occurs in the soft part, it does not affect the overall response
significantly.

Fig. 13 shows the evolution of the damage in the specimen. After
initiation the fracture propagates normally until reaching the material
transition zone. Then, since branching requires less energy than
continuing into the hard material after a short period the damaged
zone becomes larger, and the crack separates along the interface.
Fig. 13e shows that after a large deformation even the stronger material
starts to break, and the reaction force to reduce. The aim of this
benchmark test is to show crack branching, therefore the finite element
mesh is densified at the center. The crack in the stiffer material is thus
wider because the finite element size at that area is larger.

3.6. Symmetric three point bending test

Consider a symmetric three point bending test depicted in Fig. 14a.
The material parameters are the following: E=20.8 kN/mm2, ν = 0.3,
lc=0.03 and 0.06 mm, gc=0.0005 kN/mm. The finite element mesh

consists of ≈28, 000 elements with a refinement of h=0.002 mm at the
middle. The loading is applied with uΔ = 10−4 mm for 360 steps, then

uΔ = 10−5 mm for the rest of the simulation.
As shown in Fig. 14a, the left and right sides of the beam are

considered elastic according to the suggestions of Moës [27]. Due to the
singularity caused by the constrained nodes, if the material remained
non-linear, the initial notch would have significantly less effect and the
crack would initiate from one of the corners.

In Fig. 14b the reaction force is shown for isotropic and anisotropic
energy degradation. For the latter, Eq. (18) is modified in order to
degrade only the tensile part of the energy:

⎧⎨⎩
ε ε

H
ψ ψ H
H

=
( ) if ( ) >

otherwise
,n

n

0
+

0
+

(29)

where ψ0
+ is the tensile part of the overall potential energy:

ψ g d ψ ψ= ( ) +0
+

0
−. It can be calculated as follows:
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2
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Functions ± stand for: positive x x x= ( + )/2+ and negative
x x x= ( − )/2− part, while ε1,2 are the principal strains. Details
concerning the stress calculation and the tangent stiffness can be found
in Ref. [27].

Fig. 7b shows only a slight difference in the macroscopic response if

Fig. 11. (a) Geometry and boundary conditions for the double notched asymmetric tensile test. (b) Fracture pattern at different displacement steps.

Fig. 12. Geometry, material properties and boundary conditions for the bimaterial tensile test. The specimen is made of two materials with significantly different stiffness and fracture
properties.
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only the tensile energy is degraded. Compared to the effect of the length
scale parameter, it is negligible. However, in Fig. 14c the fracture
pattern shows that if compression can cause damage a small fracture
zone appears under the applied load. This becomes more and more
significant if the loading is employed using a concentrated force. Due to
the singularity this can cause the crack to propagate not from the notch
but from the loading area.

3.7. Perforated asymmetric bending test

With the asymmetric three point bending test a curvilinear crack
trajectory can be studied. The evolution of the crack path strongly
depends on the precise position of the holes [33]. In Fig. 15 the
geometry and the boundary conditions are shown. Similarly to the
symmetric problem, here the sides are considered elastic. The non-
linear material parameters are the following: E=20.8 kN/mm2, ν = 0.3,
lc=0.025 mm, gc=0.001 kN/mm. The mesh is refined around the holes
and the notch (h=0.01 mm). The model contains ≈60,000 elements.

Fig. 13. Fracture pattern for different load steps. In parts (c) and (d) a close lookup is given at the branching area.

Fig. 14. (a) Geometry and boundary conditions for the symmetric three point bending
test. (b) Reaction force as a function of applied displacement for two different lc values.
The symmetric degradation case is shown with solid line and the asymmetric one with
dashed line. (c) Fracture pattern for lc=0.06 mm with symmetric and asymmetric energy
degradation. The damaged area caused by compressive damage is highlighted in the
upper figure.

Fig. 15. Geometry and boundary conditions for the perforated asymmetric bending test.
The holes are 0.5 mm in diameter. Example 1: a=6 mm, b=1 mm. Example 2: a=5 mm,
b=1.5 mm.

Fig. 16. Fracture pattern for the two cases compared with experimental results of
Bittencourt's et al. [33].
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The bending load is applied with: uΔ = 10y
−3 mm for 150 steps, then

uΔ = 10−4 mm for the rest of the simulation.
Two examples are studied, similarly to Ref. [33]. The geometrical

differences can be found in Fig. 15.
It is a great example, because by modifying the initial size and

position of the notch, the governing fracture pattern can be altered. If
the crack is placed closer to the holes and its initial length is larger, the
governing fracture approaches the second hole from the right.
However, if it is further away, the fracture appears from the left.

Fig. 16 shows that the crack pattern is recovered precisely with the
phase-field method for the first example. However, the crack collides
with the first hole in the second, then follows the experimental results
as well. In the phase-field scheme the crack has a finite width.
Therefore, if the damaged zone reaches a hole, it attracts the crack,
and the fracture cannot pass by. Usually, the second example is not
shown in papers dealing with diffuse crack propagation [12,20,34] due
to the above mentioned problem. However, we strongly believe that if
this method is going to be used by practicing engineers, not only the
functional cases should be shown, but the attention needs be drawn to
examples where the approach gives less precise results.

3.8. Three dimensional single notched plate

We end this section with a three dimensional case. Similarly to the
2D case, a single edge notched specimen is studied with a mode I crack.
The material properties and the geometry are taken according to Ref.
[12]: E=20.8 kN/mm2, ν = 0.3, lc=0.2 mm, g = 5·10c

−4 kN/mm with
the mesh of ≈54,000 elements, and the refinement of h = 0.03 mm. The
loading is applied with uΔ = 10−4 mm for 250 steps, then it is reduced
to uΔ = 10−5 mm.

Fig. 17a and b show the geometry and the 3D finite element mesh.
To show the crack, the isosurface of the damage phase-field is

depicted with the value larger then 0.97 in Fig. 17c. The result is in
agreement with the monolithic solution of Miehe et al. [12].

A 3D example containing one element is included as Supplementary
material with the corresponding source code.

4. Conclusion

A staggered phase-field model was implemented in the commercial
finite element code Abaqus/Standard to simulate brittle fracture in 2D
and 3D solids. The implementation was carried out in the framework of
a user defined finite element (UEL). To visualize the results, an
additional layer of UMAT was included. The solution is given as two
(plus one for visualization) finite element layers. Each layer contributes
to different degrees of freedom. Depending on the dimensionality each
node has two (or three) translational and one phase-field (damage)
DOF. The phase-field is a scalar variable which connects broken and
unbroken materials. If its value reaches one, both stiffness and stress
reduce to zero.

The method is based on the rate-independent variational principle
of diffuse fracture. The elastic displacement and the fracture problem
are decoupled and solved separately. The connection is established
using a so-called history variable, which contains the materials elastic
potential energy.

The sources code for both 2D and 3D element are available as
Supplementary material with four benchmark examples. Abaqus is one
of the most widely used software in practice. Therefore, this imple-
mentation enables practicing engineers and scientists to simulate easily
not only crack propagation, but initiation, curvilinear paths, branching
and even coalescence.

The utility of the method is shown through several examples:
starting from one element up to 3D crack propagation.

It was shown that the right choice of the load step is the most
important to achieve precise results. The size of the finite elements has
small effect on the macroscopic force response if it is smaller than the
half of the length scale parameter (lc).

There remains an important question: is lc, which controls the
diffusion of the crack, a material parameter, or just a numerical one.
This can be tested using atomic scale simulations [35,3] as well as
microscopic experiments [36].

Present implementation gives a transparent code which can be
developed further in order to model large strains [22], plasticity near
cracks [37], snap-back effects [23] or even dynamic fracture [21] in
glass [38].

Appendix A. Implementation details

To calculate the phase-field fracture problem a split scheme operator is used. The following linear equation system is solved iteratively using a

Fig. 17. (a) Geometry and boundary conditions for the three dimensional single edge notched tensile test. (b) Finite element mesh. (c) Fracture pattern: isosurface of the phase-field
with the value above 0.97.
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Newton-Raphson algorithm, updating the tangent matrix and the residue vector at each internal iteration:
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The corresponding residue vector for the phase-field degrees of freedom reads as:
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where Nd is the vector of the shape functions: N NN = [ … ]d
b1 (where b=4 for 2D and b=8 for 3D) and Bd is a matrix with the spatial derivatives
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The phase-field values are calculated on each integration point as: d N d= d , where d is a vector contacting phase-field values on each element
node. The local gradient reads similarly as: d B d∇ = d .

In Eq. (A.1) the tangent matrix is calculated as follows:
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The displacement residue can be divided into internal and external parts: r f f= −u int ext. The external force vector reads as:

∫ ∫γdV dAf N N t= ( ) · + ( ) · .
Ω

u T
Ω

u Text
∂ (A.4)

Whereas, the internal one is:
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Ω
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Finally we give the tangent matrix for the displacement field solution:

∫ d k dVK B C B= {[(1 − ) + ]( ) }u
Ω

u T u2
0 (A.6)

Similarly to the phase-field problem Nu and Bu are the vector of shape functions and its derivatives used in classic finite elements [39].

Appendix B. Tutorial: one element

Present section shows a simple example, which can be used to create any model in Abaqus/Standard with the staggered fracture model. The
problem which is going to be solved is a simple element subjected to a uniaxial tension. This example is shown in the first Supplementary folder
(Abaqus input file and FORTRAN code). For results and comparison with other methods see Section 3.

Every problem consists of two files: an Abaqus input file (*.inp) and a FORTRAN file (*.for or *.f, depending on the operation system).
Due to the problem of the allocation of the common block for every finite element mesh a new FORTRAN file should be created. The only variable

which should be modified in the provided example file is N_ELEM (the number of the elements in one layer). Thus, in this case N_ELEM=1.
The Abaqus input file is generally written by the software itself, however we can access it before initiating the simulation.
In the first section the parts are created. The nodes are given (*Node) and the elements are generated. After creating all the nodes, a command is

given to define the phase-field element type (*User element, nodes=4, type=U1, properties=3, coordinates=2, VARIABLES=8). This
command creates an element with four nodes, in 2D, with three material properties and eight status variables. The status variables are used to
transport information from one step to the next. It contains the phase-field value and the history variable at each integration point. For details visit
Table 1, where first the displacement then the phase-field variables are listed.

In the next line we define the concerning degree of freedom, in this case only the third. To create the elements after the command: *Element,
type=U1, the elements are given starting with the serial number then the nodes of the corners in a counterclockwise list: 1, 1, 2, 4, 3. To assign
material properties to the elements a set is created. After which the command *Uel property, elset=AllPhase and the properties are given in
the next line (where AllPhase is the name of the set containing the phase-field elements). The properties are gives as follows: length scale
parameter (lc), fracture surface energy (gc), thickness.

Similarly the second layer can be created (see example file). When generating the elements, the same node sequence is listed and N_ELEM is
added to the first digit (serial number): 2, 1, 2, 4, 3. The material properties should be given in the following order: Young's modulus (E),
Poisson's ratio (ν), thickness, stability parameter (k, usually a small number).

The third layer is created following the sequence mentioned above. The nodes are listed the third time in the same order while the serial number
of the elements shifted again with N_ELEM: 3, 1, 2, 4, 3.

Than in the assembly section the nodes are declared, where the boundary conditions are applied. Here an additional set should be defined in
order to save only the results from the UMAT elements: *Elset, elset=umatelem.

From this point, the loads, boundaries and the analysis is defined usually as it is done in a normal input file.

2 In 2D it is constructed only from x y, directional components.

G. Molnár, A. Gravouil Finite Elements in Analysis and Design 130 (2017) 27–38

37



A general advise is to create the finite element model using the graphical interface of Abaqus, then replicate the three different layers multiplying
the serial number of the elements as it is shown above. Furthermore, adding a line in the ASSEMBLY section pointing to the UMAT elements for
post-processing purposes. Then creating a job based on the new input file linked to the FORTRAN script.

To visualize the results simply open the concerning *.odb file and select the desired solution dependent variable (SDV) in contour plot mode
according to Table 1. To remove the white X from the bottom left corner go to: Options/Display Group/Create…and select ELEM-1.UMATELEM from
the Elements item and press replace. This seems unnecessary in this case, but for many elements the white nodes can dilute the image.

Appendix C. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.finel.2017.03.002.
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