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Abstract We study the problem of crack front seg-
mentation into facets under mixed mode I+ III load-
ing. Discrete facet network nucleation is determined
based on the match asymptotic expansion approach of
the coupled criterion considering both the influence of
T-stress (parallel to the initial crack front) and mode-
dependent fracture properties. We show that consider-
ing exclusively either T-stress ormode dependent prop-
erties, facet nucleation may be more favorable than
straight crack propagation but in conditions that are
incompatible with experimental observations. It is only
by coupling mode-dependent fracture properties with
T-stress that we are able to determine configurations
compatible with experimental observations for which
facet nucleation is more likely to occur than straight
crack propagation. These configurations depend on the
T-stress magnitude and critical shear energy release
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rate. We thus highlight that crack front segmentation
into facets is material and loading dependent phe-
nomenon that is not related to a sole mode mixity
threshold but also to T-stress magnitude and shear crit-
ical energy release rate.
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1 Introduction

In the context of linear elastic fracture mechanics
(LEFM), the propagation of a crack loaded in mode
I+ II is nowadays generally well predicted (Erdogan
and Sih 1963; Pham et al. 2017) using symmetry
arguments (Goldstein and Salganik 1974) or Griffith’s
energy minimization principles (Francfort and Marigo
1998). It is less straightforward when some amount
of mode III is present mainly because of the intrin-
sic three-dimensional character of the problem and the
complexity of the propagation path topology. Fracture
undermixedmode I+ III loading has been studied since
the first experimental works of Sommer (1969) who
highlighted lance-like fracture facets in Knauss (1970),
Palaniswamy and Knauss (1978) who evidenced the
formation of penny-shaped fracture surfaces straddling
the original straight crack front in a crossed linked poly-
mer. The complex fracture pattern induced by such a
loading has since then been evidenced in other materi-
als and configurations such as for instance fault forma-
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tion (Cox and Scholz 1988; Pollard et al. 1982), cracks
in rocks (Younes and Engelder 1999), polymers (Buch-
holz et al. 2004; Chen et al. 2015; Hull 1994; Lazarus
et al. 2008; Lin et al. 2010), metals (Vojtek et al. 2016,
2013), gels (Ronsin et al. 2014) or even cheese (Gold-
stein and Osipenko 2012).

A commonly used test is 3- or 4-points single edge
notched bending performed on rectangular beams con-
taining a crack inclined with respect to mode I (Fig. 1a)
(Lazarus et al. 2001; Lin et al. 2010).

In this setup, a rotation of the original straight
crack toward a pure mode I propagation configura-
tion is observed at the macroscale, but closer look
at the crack surface indicates that it rather has the
shape of a saw-tooth factory roof. This particular pro-
file actually originates from the formation of small
aligned facets along the initial crack front (Fig. 1b).
The macroscopic rotation results from the presence
of mode II that changes sign on either side of the
front (Lazarus et al. 2008) since the crack opens onto
free edges (Dhondt et al. 2001). Hence it is usu-
ally well captured by fracture propagation simulations
based on LEFM and the Principle Local Symmetry
(Goldstein and Salganik 1974) or equivalently Grif-
fith’s based energy minimization principle (Amestoy
and Leblond 1992), using for instance extended finite
element method (Gravouil et al. 2002), virtual crack
closure integral method (Buchholz et al. 2004; Dhondt
et al. 2001; Lazarus et al. 2008), dual boundary element
modeling (Citarella and Buchholz 2008), eigen erosion
(Pandolfi and Ortiz 2012) or phase-field approach to
fracture (Molnár et al. 2022; Pham and Ravi-Chandar
2017). The facets originate from the presence of a dom-
inant mode III over mode II contribution at the center
of the crack front (Lazarus et al. 2008). Some of these
facets then growandfinally coalesce (Fig. 1b) due to the
shielding interaction between facets (Pham and Ravi-
Chandar 2014). In spite of their complexity, this crack
topology can be obtained accurately by propagating
already existing facets following classical LEFM rules,
as has been evidenced by continuum phase field simu-
lations (Chen et al. 2015; Henry 2016; Pham and Ravi-
Chandar 2017).

Although generally occurring in presence of mode
III, crack front segmentation into facets does not
develop systematically (Eberlein et al. 2017; Ronsin
et al. 2014). Several authors related the occurrence
of facets to a certain threshold in terms of mode III
(KIII) to mode I (KI) stress intensity factor (SIF) ratio.

For instance, Eberlein et al. (2017) showed experimen-
tally that in some configurations, below KIII/KI =0.57
threshold, no facet formation is observed and the
crack grows continuously. Facets observed by Som-
mer (1969) were obtained for KIII/KI = 0.06. Cam-
bonie and Lazarus evidenced the presence of facets for
KIII/KI ratios between 0.1 and 0.6. Pham and Ravi-
Chandar observed facets for KIII/KI = 0.58 (Pham
and Ravi-Chandar 2016), but also for a very small
KIII/KI = 0.001 threshold in another configuration
(Pham and Ravi-Chandar 2014). Finally, it seems that
there is no clear experimental consensus regarding the
existence of a KIII/KI threshold for facet nucleation.
At least if this threshold is a condition for the facet
appearance, it is obviously not the only one.

Toughening induced by the presence of mode III
has been reported in several experiments (Davenport
and Smith 1993; Eberlein et al. 2017; Hattali et al.
2021; Lin et al. 2010; Liu et al. 2004). Using a two-
scale cohesive zone (CZ) model (Lazarus et al. 2020;
Leblond et al. 2015), this increasing resistance to frac-
ture has been shown to be due to the presence of facets
at the microscale, whose further propagation requires a
higher load than the one promoting a smooth propaga-
tion (Hattali et al. 2021). The toughness increase can be
determined by the CZ model provided the existence of
facets whose geometry can be described by profilome-
try measurements (Cambonie and Lazarus 2014). Nev-
ertheless, a self-sufficient prediction requires a better
understanding of why and how crack front segmenta-
tion into facets occurs from the initial crack.

The formation of facets was tackled from two dif-
ferent points of view. The first one considers that facets
develop by continuous propagation of all the points
of the initial crack following stability and bifurcation
arguments. The second one considers that the facet seg-
mentation results from the nucleation of newcracks that
are connected to the initial crack front along a discon-
tinuous set of points. In presence of mode III, straight
crack propagation may be unstable and the develop-
ment of a segmented crack front may be favored. It
has been evidenced numerically by phase-field simula-
tions (Pons and Karma 2010) and confirmed by a thor-
ough closed-form linear stability analysis of the prob-
lem (Leblond et al. 2011). This analysis evidenced the
existence of a theoretical threshold KIII/KI depending
on the material’s Poisson’s ratio below which straight
propagation is expected to occur. It is however gener-
ally too large compared to that measured experimen-
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Fig. 1 a Macroscale illustration of straight inclined crack rota-
tion towards pure mode I propagation configuration under three
point bending. b Experimental observation of saw-tooth factory

roof crack. The length of the initial crack front before segmen-
tation is about 12mm

tally (Pham and Ravi-Chandar 2014). The instability
has been shown to be subcritical (Chen et al. 2015),
meaning that even below the linear stability thresh-
old, out-of-plane propagation may occur in line with
experimental observations, if the number of defects is
high enough. The number of required defects needed
to trigger the instability remains however unknown,
and the linear stability threshold may express below
this level. Dependance of the fracture energy on the
mode mixity ratio has been shown to reduce the thresh-
old (Leblond et al. 2019). However non-physical frac-
ture energy values had to be used to retrieve thresholds
measured experimentally. This limitation was recently
improved by considering the influence of non-singular
stresses (T -stresses) on the stability threshold (Lebi-
hain et al. 2022). It was observed, in some experiments
allowing observation at small scales, that the propa-
gation does apparently not occur by propagation of
all the point of the crack front but rather by sponta-
neous nucleation of new cracks from isolated points
(Pham and Ravi-Chandar 2016). These facet nucle-
ations may be at the origin of the instability develop-
ment, in otherwords theymay form the required defects
to trigger the subcritical instability.Why and how facets
nucleate still remains unclear. Facet nucleation under
mixed mode I+ III loading was studied numerically by
Mittelman and Yosibash (2015), Yosibash and Mittel-
man (2016) and Doitrand and Leguillon (2018). These

works made it possible to predict the initiation loading
level of one facet (Yosibash and Mittelman 2016) or
of a periodic array of facets (Doitrand and Leguillon
2018) based on the coupled criterion (CC) (Leguillon
2002), assuming that the crack orientation is defined by
the direction maximizing the stress normal to the crack
plane. The crack shape was either idealized (Mittelman
and Yosibash 2015; Yosibash and Mittelman 2016) or
defined by stress isocontours (Doitrand and Leguillon
2018), which yielded crack shapes close to the shapes
observed experimentally by Pham and Ravi-Chandar
(2016). Nevertheless, in these studies, the predicted
loading level at facet initiation was actually larger than
the one obtained for straight propagation of the ini-
tial crack front predicted by LEFM. In our previous
work (Doitrand andLeguillon 2018), both non-singular
stresses and mode-dependent fracture parameters were
disregarded in the analysis. But they may both have an
influence on the facet initiation loading level as well as
facet geometrical features. The objective of this work is
thus to revisit the problem of facet nucleation using the
CC by investigating the influence of T -stress as well as
of mode-dependent fracture properties. We present the
matched asymptotic expansion approach of the CC to
predict facet nucleation and its numerical implemen-
tation in Sects. 2 and 3, then we study the influence
of T-stress and mode-dependent fracture properties on
facet nucleation in Sects. 4, 5, and 6.
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2 Determination of the incremental energy release
rate

2.1 Matched asymptotic approach

We study the problem of sharp rectilinear crack front
loaded in combined mode I+ III+T-stress. We only
focus on the T-stress component T3 parallel to the crack
front direction (Ox3) (Fig. 2). We consider two possi-
ble scenario, namely either crack propagation in the
initial crack direction (Fig. 2c) or crack front segmen-
tation into an array of small facets that are inclined
with respect to the initial crack direction, as depicted
in Fig. 2a.

Experimental observations show that the facet net-
work is almost periodic (Pham and Ravi-Chandar
2016). Therefore, it can be modeled by periodically
repeating a representative volume element contain-
ing a single facet (Fig. 2d). Straight crack propagation
or facet nucleation is assessed based on the matched
asymptotic (MA) approach of the CC (Doitrand and
Leguillon 2018, 2021; Doitrand et al. 2020a, b; Leguil-
lon 2002). It consists in considering a two-scale 3D
problem to solve under linear elasticity and small defor-
mations assumption. The first problem is written at the
specimen scale. The displacement field U� (the super-
script � refers to the presence of a crack extension �

along (Ox1) direction) is solution of the following set
of equations:

⎧
⎪⎪⎨

⎪⎪⎩

−∇ · σ(U�) = 0,
σ (U�) = C : ∇sU�,

σ (U�) · n = 0 along the crack faces,
n is the normal to the crack face,

(1)

where σ and C respectively are the stress and stiffness
tensors. It is assumed that the unknown crack extension
� at initiation is relatively small compared to the spec-
imen dimensions, this assumption has to be checked
afterwards to ensure the validity of the MA approach.
Therefore, the actual solution can be approximated by:

U�(x1, x2, x3) = U0(x1, x2, x3) + small correction,

(2)

whereU0(x1, x2, x3) is the solution to a problem with-
out crack extension (� = 0) and the small correction

is actually determined by solving the second prob-
lem, close to the crack tip. This approximation is valid
except near the initial crack tip, it is called the outer
field. The asymptotic displacement field correspond-
ing to an initial sharp crack under mode I+ III+T-stress
loading can be written as:

U0(x1, x2, x3) = U0(0, 0, 0) + KI
√
ruI(θ)

+ KIII
√
ruIII(θ) + T3r t(θ) + ..., (3)

where KI and KIII are mode I and III stress intensity
factors, T3 is the T-stress magnitude, uI, uIII and t are
the corresponding angular functions, r and θ are spheri-
cal coordinates. For the sake of simplicity, we will omit
the dependency to the second angle in spherical coor-
dinates since mode II is not considered in this work.
The previous equation can be rewritten:

U0(x1, x2, x3) = U0(0, 0, 0) + KI
√
r(uI(θ)

+ muIII(θ) + mT (r)t(θ) + ...), (4)

where the mode mixities m and mT are defined so that
m = KIII/KI, and mT (r) = √

rT3/KI. The corre-
sponding expansion of the stress field is obtained using
Hooke’s law:

σ 0(x1, x2, x3) = KI√
r

(
sI(θ) + msIII(θ)

+ mT (r)τ (θ) + ...
)
. (5)

To have a detailed form of the actual solution U�,
the initial domain is rescaled by 1/�. We define the
new dimensionless space variables as yi = xi/�. As
� tends towards 0, the corresponding domain becomes
unbounded. The crack extension along (Ox1) direction
is thus 1 in the dilated domain, which is called the inner
domain. The inner domains in the two possible initia-
tion configurations (crack extension in the initial direc-
tion of crack front segmentation) are depicted in Fig. 2.
The actual solution (with crack extension) is assumed
to expand in the following way:

U�(x1, x2, x3)

= U�(�y1, �y2, �y3) = F0(�)V0(y1, y2, y3)

+ F1(�)V1(y1, y2, y3)

+ F2(�)V2(y1, y2, y3)

+ ..., (6)
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Fig. 2 a Illustration of crack front segmentation into a peri-
odic array of inclined facets, b illustration of the initial crack
front configuration under mode I+ III+T-stress and representa-

tive volume element of crack propagation configuration, c along
the initial front direction or d by crack front segmentation into a
facet network

with

lim
�→0

Fi+1(�)

Fi (�)
= 0. (7)

The V i form the inner field, they are solutions to prob-
lemswith prescribed behavior at infinity. They fulfil the
usual balance equation, boundary conditions and the
linear elastic constitutive law derived from the original
problem. They must match at infinity with the behav-
ior of the far field. Therefore, there exists an area, far
from the free edge in the inner expansion and close to it
in the outer expansion where both expansions given in
Eqs. (2) and (6) hold true. Matching the terms in Eqs.
(3) and (6) leads to:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F0(�) = 1,
V0(y1, y2, y3) = U0(0, 0, 0),
F1(�) = KI

√
�,

V1(y1, y2, y3) ≈ √
ρ(uI (θ) + muIII(θ)),

F2(�) = T3�,
V2(y1, y2, y3) ≈ ρt(θ),

(8)

where ρ = r/�. The symbol ≈ means “behaves like at
infinity”, the V i can thus be written as:

⎧
⎪⎨

⎪⎩

V1(y1, y2, y3) = √
ρ(uI (θ) + muI I I (θ))

+V̂
1
(y1, y2, y3),

V2(y1, y2, y3) = ρt(θ) + V̂
2
(y1, y2, y3).

(9)

We have to prove the existence of V̂
i
(y1, y2, y3) and

to verify the equilibrium equations. By combining Eqs.

(6) and (8) into Eq. (1), V̂
i
is solution to the following

problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇y · σ̂
i = 0 where ∇y = 1

�
∇x ,

σ̂
i = C : ∇s

yV̂
i
,

σ̂
1 · n = −( 1√

ρ
s I (θ) + m√

ρ
sIII(θ)) · n

along the crack faces,
σ̂
2 · n = −τ(θ) · n along the crack faces,

V̂
i
vanishes at infinity.

(10)

The system of equations has a unique solution with a
finite energy (Leguillon and Sanchez-Palencia 1987)
(extension of Lax–Milgram theorem to unbounded
domains). As a consequence of the finite energy, the
solution decreases to 0 at infinity. The expansion finally
writes:

U�(x1, x2, x3) = U�(�y1, �y2, �y3) = U0(0, 0, 0)

+ KI
√

�
[√

ρuI (θ)
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+ m
√

ρuIII(θ)

+ V̂
1
(y1, y2, y3)

]

+ T3�
[
ρt (θ) + V̂

3
(y1, y2, y3)

]

+ ... (11)

The IncrementalEnergyReleaseRate (IERR) is defined
as Ginc = −δWp/S, where Wp = 1

2

∫

V σ : εdV is the
elastic strain energy and S the crack surface. The elas-
tic strain energy variation due to crack initiation thus
writes:

−δWp(�) = a11(ϕ)K 2
I + a13(ϕ)KIKIII + a33(ϕ)K 2

III

+ b1(ϕ)KIT3
√

� + b2(ϕ)KIIIT3
√

�

+ c(ϕ)T 2
3 �, (12)

where ai j , b j and c are coefficients depending on the
facet shape and angle. The crack surface can be written
as S = α�2, with α a scaling coefficient depending on
the facet shape. As a consequence, the IERR writes:

Ginc(�) = −δWp(�)/S

= 1

E

(
A11(ϕ)K 2

I + A13(ϕ)KIKIII + A33(ϕ)K 2
III

+ B1(ϕ)KIT3
√

� + B2(ϕ)KIIIT3
√

�

+ C(ϕ)T 2
3 �

)
, (13)

involving the material Young’s modulus E and the
dimensionless coefficients Ai j = Eai j/(α�2), Bi =
Ebi/(α�2) and C = Ec/(α�2). Introducing the mode
mixities m and mT , the IERR also rewrites:

Ginc(�) = K 2
I

E

[
A11(ϕ) + mA13(ϕ) + m2A33(ϕ)

+ mT (�)B1(ϕ) + mmT (�)B2(ϕ)

+ mT (�)2C(ϕ)
]
.

(14)

We define the dimensionless IERR χ = EGinc/K 2
I so

that:

χ(ϕ,m,mT (�)) = A11(ϕ) + mA13(ϕ) + m2A33(ϕ)

+ mT (�)B1(ϕ) + mmT (�)B2(ϕ)

+ mT (�)2C(ϕ). (15)

The dimensionless IERRonly depends on the Poisson’s
ratio of the material and on the facet shape.

2.2 Numerical determination of Ai j , Bi and C

The functions Ai j , Bi and C can be computed in
the inner domain as a function of the crack orienta-
tion ϕ. They are obtained by calculating the poten-
tial energy difference between configurations with or
without crack extensions. It is done by FE calcula-
tions (Abaqus quasi-static implicit solver) in the inner
domain that is artificially bounded at a distance large
with respect to the crack extension (which is 1 in the
inner domain). FEcalculations are performedunder lin-
ear elasticity and assuming small deformation in order
to calculate the stress and the potential energy release
due to crack initiation. The calculations are made in the
inner domain including a crack lying in a plane form-
ing an angle ϕ with the initial crack front. The domain
faces in the x3-direction are inclined with an angle cor-
responding to the crack angle, which enables modeling
an overlap between cracks as proposed in Doitrand and
Leguillon (2018). Elliptical crack shapes forming unit
radius circular projections in (Oy1y2) are considered.
Periodic boundary conditions along (Oy3)direction are
imposed on the inner domain lateral faces to represent
an infinite network of cracks. The inner domain width
thus corresponds to the distance between two facets
along (Oy3) direction. A methodology allowing the
determination of the initiation minimum crack spac-
ing was previously proposed (Doitrand and Leguillon
2018; Leguillon and Yosibash 2017). Since we mainly
focus on the initiation SIF, the distance between facets
is set to 200 times the facet extension along (Ox1),
which is verified to be large enough so that there is no
interactions between two facets. If the inter-distance
facet is large enough, the IERR does not depends on
the facet spacing. However, a smaller IERR is obtained
for a facet network with smaller inter-facet spacing so
that facet nucleation occurs for a larger imposed load-
ing (Doitrand and Leguillon 2018). The inner domain
is artificially bounded at a large distance (200 times
the crack extension along (Oy1) direction) so that a
larger domain size results in differences smaller than
2% on the IERR and thus on the loading at crack ini-
tiation. Dirichlet boundary conditions based on mode
I, mode III and T-stress asymptotic displacement fields
corresponding to an initial crack are imposed on the
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Fig. 3 Variation of the normalized IERR coefficients as a func-
tion of the crack orientation obtained for ν = 0.36

inner domain boundary. The mesh, consisting of linear
8-nodes elements, is refined near the facet and typi-
cally contains around 1.3M degrees of freedom. The
minimum mesh size near the facet is chosen so that
differences in Ginc smaller than 1% are obtained for a
finer mesh. For a given facet angle, three calculations
are performed, respectively with prescribed displace-
ments fields corresponding to mode I, mode III and
T-stress loading. For each calculation, two steps are
performed to obtain the elastic strain energy with and
without facet opening, and thus the elastic strain energy
variation and IERR. These three calculations enable
determining the coefficients A11(ϕ), A33(ϕ) and C(ϕ)

[Eq. (15)]. Then, the IERR corresponding to a combi-
nation of several modes is obtained by linear combina-
tions of these three calculations, which enables deter-
mining the coefficients A13(ϕ), B1(ϕ) and B2(ϕ) [Eq.
(15)]. The functions Ai j , Bi ,C are finally computed
for different values of ϕ (Fig. 3).

They only depend on thematerial Poisson’s ratio and
facet geometry. In the sequel, a ν = 0.36Poisson’s ratio
is used for the calculations. The functions are given for
other values of Poisson’s ratio in the Appendix.

3 The coupled criterion

3.1 Mode-independent properties

The CC states that crack initiation occurs provided two
conditions are fulfilled (Leguillon 2002):

– Stress condition: the tensile stress must be larger
than the material tensile strength σc along the crack
path before initiation: σnn(x) � σc, ∀ x ∈ Γ

(where Γ represents the new crack, i.e. the facet).
For the sake of simplicity, in the sequel the stress
criterion will be written as σnn(�) � σc, where � is
the facet extension along (Oy1).

– Energy condition: the potential energy released
by crack opening must be larger than the energy
required for crack nucleation: GcS, where Gc is the
material’s critical energy release rate (ERR).

The second condition can be written using the IERR
defined in Sect. 2.1: Ginc = −δWp/S � Gc, which can
be calculated using Eq. (14). For a fixed facet orienta-
tion with respect to the initial crack ϕ, applying the CC,
Ginc ≥ Gc and σnn ≥ σc all along the crack path prior
to initiation, reverts to determining the facet nucle-
ation SIF KI(ϕ) and the corresponding crack exten-
sion �c(ϕ). They are obtained by solving the following
equation system:

⎧
⎨

⎩

K 2
I
E χ(ϕ,m,mT (�c)) � Gc,
KI√

�
(sInn(ϕ) + msIIInn(ϕ) + mT (�)τnn(ϕ)) � σc.

(16)

For each value of ϕ, combining both equations finally
yields the equation that must be solved to determine
the initiation crack length �c:

χ(ϕ,m,mT (�c))

(sInn(ϕ) + msIIInn(ϕ) + mT (�c)τnn(ϕ))2
= 1

�c

EGc
σ 2
c

(17)

Introducing the material characteristic length �mat =
EGc
σ 2
c
, it can be deduced from Eq. (17) that the same

initiation length �c is obtained for different material
properties resulting in a similar �mat. Equation (17) can
be solved using Newton’s method to determine �c(ϕ).
The SIF to initiate a facet oriented with an angle ϕ is
then obtained as:

KI(ϕ) =
√

EGc
χ(ϕ,m,mT (�c(ϕ)))

, (18)

or equivalently by:

KI(ϕ) = σc
√

�c(ϕ)

sInn(ϕ) + msIIInn(ϕ) + mT (�c(ϕ)))τnn(ϕ)
.

(19)
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In the sequel, we refer to KI(ϕ) as facet nucleation
SIF. The first facet to initiate corresponds to the one
orientedwith an angleϕc that requires the smallest facet
nucleation SIF, facet initiation thus occurs for a facet
nucleation apparent SIF K app

I :

⎧
⎨

⎩

K app
I = min

ϕ
(KI(ϕ)),

ϕc = argmin
ϕ

(KI(ϕ)).
(20)

For a given mode mixity β = KIII/(KI + |KIII|), the
corresponding mode III apparent SIF can be obtained
as KIII = (β/(1 − β))KI. In the case of pure mode III
loading, β = 1 (KI = 0) and the same reasoning as
previously can be employed by replacing KI by KIII.

3.2 Mode-dependent properties

We now consider opening and shear mixed mode crack
initiation. It consists in introducing the material shear
strength (τc) and critical ERR (GIIIc) in the stress and
energy conditions respectively. These parameters are
generally not used for isotropic homogeneous material
since evenunder shear loading, the crack takes an orien-
tation so that it is loaded under openingmode. They are
more usually encountered when dealing with interface
failure, where they are defined as the strength and crit-
ical ERR corresponding to straight crack propagation
along the interface under remote pure antiplane shear.
The same definition can be kept in the case of isotropic
homogeneous material. The parameters τc and GIIIc are
thus defined as the theoretical strength and critical ERR
that would correspond to a straight crack propagation
under remote pure antiplane shear. Of course, this con-
figuration is not achieved in experiments. However, it
can be encountered numerically using models such as
the CC in which the crack path is a priori defined, thus
possibly experiencing both opening and shear.

It is expected that if the loading is not pure open-
ing, not only the tensile strength σc and critical ERR
GIc are involved but also τc and rate GIIIc. It is thus
possible to rewrite the stress and the energy criteria in
a very general way that accounts for the stress mix-
ity in the fracture mechanism. The mixed mode CC
formulation was established in 2D to study crack ini-

tiation under mode I+II+T-stress loading (Leguillon
andMurer 2008). We extend this formulation to 3D for
mode I+III+T-stress loading. We start rewriting the
stress criterion to account for the stress mixity, which
writes:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σnn(r, θ) = KI√
r

(
sInn(θ)

+msIIInn(θ) + mT (r)τnn(θ) + ...
)
,

σnt(r, θ) = KI√
r

(
sInt(θ)

+msIIInt (θ) + mT (r)τnt(θ) + ...
)
,

(21)

where σnn and σnt respectively hold for the tensile and
out-of-plane shear components of the stress tensor, m
and mT are the previously defined mixity parameters.
The functions sinn, s

i
nt and τ int are calculated analytically

and shown in Fig. 4 for ν = 0.36.
We define a mixity parameter μ based on the shear

and tensile stress components:

μ = |σnt|
σnn

, (22)

which varies between 0 (pure opening mode) and ∞
(pure shear mode). The stress mixity ψ = tan−1(μ)

may also be used, which thus varies between 0 (pure
opening mode) and π/2 (pure shear mode). The energy
criterion is written based on Hutchinson’s and Suo’s
condition (1992) so that the critical ERR is defined as a
function of opening (GIc) and shear (GIIIc) critical ERR
and stress mixity:

{Gc(ψ) = GIc(1 + tan2 ξψ)),

with ξ = 2
π
tan−1

(√
GIIIcGIc

− 1
)
.

(23)

For pure opening mode, ψ = 0 and Gc = GIc whereas
for pure shear mode, ψ = π/2 and Gc = GIIIc. The
local shear and tensile stress components may not be
uniform over the whole crack surface before initiation,
which results in varying stress mixity and thus varying
Gc over the whole crack surface before initiation. As a
consequence, we define Gc as the average critical ERR
over the crack surface before initiation, which writes:

Gc(�) = 1

S

∫

Γ

Gc(ψ)dS, (24)
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Fig. 4 Variation of the
normalized a tensile and b
shear stress components as a
function of the crack
orientation

where Γ represents the crack and S represents the
crack surface (area S = α�2). The variable Gc thus
depends on the crack extension along (Ox1) direction,
�. The energy condition of the CC considering mode-
dependent fracture properties writes:

Ginc(�) � Gc(�) (25)

The stress criterion, which must be fulfilled over Γ , is
written as a power ellipse surface in the tensile-shear
stress space (in the following, we consider q = 2):

(
σnn(�)

σc

)q

+
(

σnt(�)

τc

)q

� 1, (26)

which rewrites in the following form:

σnn(�) � σcτc
(
τ
q
c + μ(�)qσ

q
c
)1/q . (27)

Combining both energy and stress conditions finally
leads to the following system of equations to be solved:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K 2
I
E χ(ϕ,m,mT (�)) � Gc(�),

KI√
�

(
sInn(ϕ) + msIIInn(ϕ) + mT (�)τnn(ϕ)

)

� σcτc(
τ
q
c +μ(�)qσ

q
c

)1/q ,

(28)

which leads to the implicit equation that must be solved
for a fixed ϕ to determine the initiation crack extension
�c(ϕ):

χ(ϕ,m,mT (�c))
(
sInn(ϕ) + msIIInn(ϕ) + mT (�c)τnn(ϕ)

)2

= 1

�c

EGc(�c)
(
τ
q
c + μ(�c)

qσ
q
c
)2/q

σ 2
c τ 2c

. (29)

The facet nucleation SIF, i.e. the SIF corresponding to
the initiation of a facet with angle ϕ finally writes:

KI(ϕ) =
√

EGc(�c(ϕ))

χ(ϕ,m,mT (�c(ϕ)))
. (30)

Finally, the initiation angle ϕc and facet nucleation
apparent SIF K app

I are obtained by minimization of
KI(ϕ).

⎧
⎨

⎩

K app
I = min

ϕ
(KI(ϕ)),

ϕc = argmin
ϕ

(KI(ϕ)).
(31)

4 Results for mode-independent properties

We recall that an objective of this work is to evalu-
ate conditions for which facet nucleation may occur
instead of straight crack propagation for different val-
ues of the mode mixity β. Facet nucleation is likely
to occur provided the facet nucleation apparent SIF is
smaller than straight crack propagation apparent SIF. In
this section, we thus assess straight crack propagation
and facet nucleation under mode I+ III in presence or
not of T-stress, considering mode-independent fracture
properties.

4.1 Straight crack propagation

In the case of straight crack propagation under mode I
and III loading, the crack propagateswhenG = K 2

I (1−
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ν2)/E + K 2
III(1+ ν)/E = Gc. Therefore, the apparent

SIF K app
I at which the crack propagates writes as a

function of the mode mixity β:

K app
I =

√
√
√
√

EGc
1 − ν2 + ( β

1−β

)2
(1 + ν)

(32)

K app
I is equal to the material’s critical SIF (KIc =

√
EGIc/(1 − ν2)) for a straight crack propagating

under pure mode I loading. Facet nucleation occurs
provided the facet nucleation apparent SIF is smaller
than straight crack propagation apparent SIF.

4.2 Mode I+ III

The CC is applied to study facet nucleation under mode
I+ III in absence of T-stress (T3/σc = 0). Figure5
shows normalized facet nucleation SIF [Eq. (18)] vari-
ation as a function of the facet angle for different mode
mixities increasing frompuremode I (top) to puremode
III (bottom).

Whatever the mode mixity, χ (and thus K app
I , see

Eq.18) does not depend on � under mode I+ III if
T3/σc = 0 [Eq. (15)]. As a consequence, facet nucle-
ation apparent SIF only depends on the energy crite-
rion. Figure5b shows facet nucleation angle (Eq.20)
as a function of the mode mixity. For sufficiently small
(close to mode I, β � 0.1) or sufficiently large (close
to mode III, β � 0.8) mode mixities, the most favor-
able crack propagation angle is zero, i.e. in the initial
crack direction. This is due to A11 and A33 exhibit-
ing a maximum for ϕ = 0◦ (Fig. 3). For intermediate
mixities (0.1 � β � 0.8), the most favorable facet
angle lies between 0◦ and 28◦ (maximum attained for
β ≈ 0.6). Figure6 shows normalized facet extension
along (Ox1) direction obtained from Eq. (17) and facet
nucleation apparent SIF [Eq. (20)] as a function of the
mode mixity.

Whatever themodemixity, facet nucleation apparent
SIF is larger than straight crack propagation apparent
SIF [Eq. (32)]. It means that facet nucleation is less
favorable than straight crack propagation. Therefore,
supplementary ingredients are needed to explain why
crack front segmentation is observed experimentally.

4.3 Mode I+ III+T-stress

We now consider the influence of a T-stress component
parallel to the initial crack front on facet nucleation for
several values of the mode mixity β. Figure7a shows
thenormalized facet nucleationSIF [Eq. (18)] as a func-
tion of the facet angle forβ = 0modemixity (i.e. mode
I+T-stress loading) and different T-stress magnitudes.

For sufficiently small T-stress magnitudes, the facet
nucleation apparent SIF (indicated as a circle for a
given T-stress magnitude on Fig. 7a) is obtained for
ϕ = 0◦. facet angle corresponding to a propagation
in the initial crack direction. However, for normalized
T-stress magnitudes T3/σc > 0.02, facets initiate with
a ϕ = 90◦ angle which actually corresponds to failure
being induced byT-stress (Fig. 7b). Figure7c shows the
normalized facet nucleation apparent SIF [Eq. (20)] as
a function of the normalized T-stress. It highlights that
facet nucleation becomes more favorable than straight
crack propagation for sufficiently large T-stress mag-
nitudes.

Figure8a shows the normalized facet nucleation SIF
[Eq. (18)] as a function of the facet angle for β = 0.5
mode mixity and different T-stress magnitudes.

Whatever the T-stress magnitude, the SIF variation
as a function of the facet angle exhibits a minimum cor-
responding to the facet initiation angle varying between
26◦ and 90◦ when increasing the T-stress magnitude
(Fig. 8b). For T3/σc larger than 0.1, facet nucleation
becomes more favorable than straight crack propa-
gation since facet nucleation apparent SIF becomes
smaller than straight crack propagation apparent SIF.

Therefore, a first ingredient that has an influence
on the facet nucleation apparent SIF and angle is the
non-singular T-stress acting parallel to the crack front
direction. A sufficiently large T-stress magnitude actu-
ally promotes facet initiation rather than straight crack
propagation. Nevertheless, the resulting facet angles
are large compared to those measured experimentally
(Cambonie and Lazarus 2014; Chen et al. 2015; Eber-
lein et al. 2017; Pham and Ravi-Chandar 2014, 2016).

5 Results for mode-dependent properties

In this section, we study the influence of considering
mode-dependent fracture properties on both straight
crack propagation and facet nucleation in the absence
of T-stress.
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Fig. 5 a Normalized facet
nucleation SIF as a function
of the facet angle for several
mode mixities (circles
represent the facet
nucleation apparent SIF, i.e.
the minimum SIF for a
given mixity) and b
Initiation facet angle
(minimizing normalized
facet nucleation SIF) as a
function of the mode mixity

Fig. 6 Normalized a
initiation facet extension
along (Ox1) direction and b
apparent SIF corresponding
either to facet nucleation
(dashed line) or straight
crack propagation (plain
line) as a function of the
mode mixity

Fig. 7 Normalized a facet nucleation SIF variation as a function
of facet angle (circles correspond to theminimumSIF for a given
T-stress), b initiation facet angle and c facet nucleation apparent

SIF as a function of normalized T-stress for β = 0. Filled circles
in b and c correspond to configurations for which facet initiation
is more favorable than straight crack propagation
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Fig. 8 Normalized a facet nucleation SIF variation as a func-
tion of facet angle (circles correspond to the minimum SIF for
a given T-stress), b initiation facet angle and c facet nucleation

apparent SIF as a function of normalized T-stress for β = 0.5.
Filled circles in b and c correspond to configurations for which
facet initiation is more favorable than straight crack propagation

Fig. 9 Normalized a
average critical ERR as a
function of the mode mixity
and b straight crack
propagation apparent SIF
for several shear critical
ERR

Fig. 10 Normalized facet
nucleation SIF as a function
of facet angle for a
GIIIc/GIc = 1.3 and b
GIIIc/GIc = 10 for several
mode mixities
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Fig. 11 a Facet nucleation
angle and b normalized
facet nucleation apparent
SIF variation as a function
of the mode mixity for shear
to opening critical ERR
ratios between 0 and 15

Fig. 12 Normalized a facet
nucleation and straight
propagation apparent SIF
for several shear to opening
critical ERR ratios and b
shear to opening critical
ERR ratio as a function of
the mode mixity
highlighting configurations
for which facet nucleation is
more favorable than straight
crack propagation

5.1 Straight crack propagation

The straight crack propagation apparent SIF consider-
ingmode-dependent properties is obtainedby replacing
Gc by Gc into Eq. (32):

K app
I =

√
√
√
√

EGc

1 − ν2 + ( β
1−β

)2
(1 + ν)

(33)

Mode-dependent properties are thus considered by
varying the critical ERRbetween the pure opening (GIc)
and shear (GIIIc) values depending on the local stress

mixityμ = |σnt |
σnn

[Eq. (23)]. In the case of straight crack

propagation, the stress mixity is μ = |KIII|
KI

= β
1−β

[
or

equivalently ψ = tan−1(μ) = tan−1
( β
1−β

)]
. It yields,

using Eq. (23):

⎧
⎨

⎩

Gc = GIc
{
1 + tan2

{
ξ tan−1

( β
1−β

)}}
,

ξ = 2
π
tan−1

(√
GIIIcGIc

− 1
)
.

(34)

Figure9a shows the normalized average critical ERR
[Eq. (24)] variations as a function of the mode mixity
for different GIIIc values [Eq. (34)].

The stress mixity increases when increasing the
mode mixity, which also increases the average critical
ERR. As a consequence, a larger straight crack propa-
gation apparent SIF [Eq. (33)] is obtained considering
mode-dependent fracture properties (Fig. 9b). Consid-
ering mode-dependent fracture properties induces only
a small increase in straight crack propagation appar-
ent SIF for small mode mixities since the stress mixity
results in a moderate increase in Gc, not sufficient to
make facet nucleation favorable (Fig. 6b). However, for
larger mode mixities, the larger stress mixity induces a
larger increase in Gc and thus in straight crack propaga-
tion apparent SIF. As a consequence, facet nucleation
may become possible provided the straight crack prop-
agation apparent SIF overcomes the facet nucleation
apparent SIF, which is assessed in the sequel.
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Fig. 13 Normalized average critical ERR as a function of facet
angle obtained forGIIIc/GIc ratios between 1 and 50, a–c T3/σc =
0.014, d–f T3/σc = 0.028 and a–c T3/σc = 0.069 normalized

T-stress magnitudes and a, d, g β = 0, b, e, h β = 0.4 or c, f, i
β = 0.8 mode mixities

5.2 Mode I+ III

Figure10a and b shows normalized facet nucleation
SIF [Eq. (30)] as a function of facet angle under
mode I+ III consideringmode-dependent properties for
GIIIc/GIc = 1.3 or 10. For each value of β, the face
nucleation apparent SIF, obtained for a facet anglemin-
imizing the facet nucleation SIF [Eq. (31)] is depicted
by a circle. For GIIIc/GIc smaller than 1.5 (Fig. 10a), for
sufficiently small (close to mode I, β � 0.1) or suffi-

ciently large mode mixities, the most favorable crack
propagation angle is close to zero, i.e. in the initial
crack direction. This is due to A11 and A33 exhibit-
ing a maximum for ϕ = 0◦ (Fig. 3). For intermediate
mixities (0.1 � β � 0.8), the most favorable facet
angle lies between 0◦ and a maximum value depend-
ing onGIIIc/GIc. ForGIIIc/GIc larger than 1.5 (Fig. 10b),
the facet nucleation angle varies monotonically with
increasingmodemixity. The facet nucleation angle and
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Fig. 14 Normalized facet nucleation SIF variation as a function
of facet angle obtained for GIIIc/GIc ratios between 1 and 50, for
a–c T3/σc = 0.014, d–f T3/σc = 0.028 and a–c T3/σc = 0.069

normalizedT-stressmagnitudes and a,d, gβ = 0,b, e,hβ = 0.4
or c, f, i β = 0.8 mode mixities

apparent SIF are shown in Fig. 11 as a function of the
mode mixity for several values of GIIIc/GIc.

For β � 0.2, increasing GIIIc does not influence
facet nucleation apparent initiation angle. However, for
larger β, it tends to shift the SIF minimum to larger
facet angles so that for GIIIc/GIc larger than 1.5, facet
nucleation angle varies monotonously as a function of
β between 0◦ (pure mode I) and ≈ 45–60◦ (pure mode
III). Nevertheless, the facet nucleation apparent SIF

is only slightly modified by considering larger GIIIc
except for large mode mixity values (Fig. 11b).

5.3 Comparison between straight crack propagation
and facet nucleation

Facet nucleation [Eq. (31)] and straight crack propa-
gation [Eq. (33)] apparent SIF are finally compared as
function of the mode mixity for several GIIIc/GIc ratios,
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Fig. 15 a, b Facet nucleation angle and c normalized initiation length as a function of the mode mixity for different T-stress magnitudes
for a GIIIc/GIc = 1, and b, c GIIIc/GIc = 10

considering mode-dependent properties in absence of
T-stress (T3/σc = 0), in Fig. 12a.

WhateverGIIIc/GIc, straight crackpropagation remains
more favorable than facet nucleation for mode mixities
smaller than β ≈ 0.63 (or equivalently |KIII|/KI >

1.7). For larger mode mixities, facet nucleation may
become more favorable than straight crack propaga-
tion provided GIIIc/GIc is large enough. The configura-
tions for which facet nucleation is more favorable are
depicted in Fig. 12b as a function of GIIIc/GIc and β.
For a fixed GIIIc/GIc, it enables determining a |KIII|/KI

threshold above which facet nucleation becomes favor-
able. Therefore, considering mode-dependent proper-
ties provides an explanation for facet nucleation being
more favorable than straight crack propagation. How-
ever, it is not sufficient to explain all the experimental
observations since it is limited to large enough mode
mixities (β > 0.63 or equivalently KIII/KI > 1.7).

6 Results considering both T-stress and
mode-dependent properties

We finally analyze the combined influence of both
mode-dependent properties and T-stress on facet nucle-
ation. Figure13 shows the normalized average critical
ERR [Eq. (24)] as a function of facet angle obtained for
several T-stress magnitudes, mode mixities and GI I I c.

The variable Gc varies between GIc if the crack
is loaded under pure opening and GIIIc if the crack
is loaded under pure antiplane shear. For instance,
in absence of mode III contribution (Fig. 13a, d, g),
Gc = GIc for ϕ = 0◦ or ϕ = 90◦ and slightly increases
for intermediate angles, themaximum value depending

on the magnitude of T-stress inducing antiplane shear
depending on the facet angle. Mode III contributes
to increase antiplane shear especially for facet angles
close to 0◦ and 90◦, which thus increases the corre-
sponding Gc (Fig. 13b, e, h and c, f, i). Increasing the
T-stress magnitude tends to shift the angle for which
the facet is mainly loaded under opening mode, i.e. for
which Gc is minimum.

Figure14 shows normalized facet nucleation SIF
[Eq. (30)] variation as a function of facet angle con-
sidering different T-stress magnitudes, mode mixities
and mode-dependent properties.

For mode I loading (Fig. 14a, d, g), facet nucle-
ation SIF is almost not influenced by mode-dependent
fracture properties. Increasing the T-stress magnitude
induces a SIF minimum switch from 0 to 90◦, i.e.
from crack propagation in the initial crack direction
to facet nucleation perpendicularly to the initial crack
front. For mode I+ III loading (Fig. 14b, e, h and c,
f, i), mode-dependent properties induce a change in
facet nucleation SIF variation so that the facet nucle-
ation SIF increases for facet angles for which the crack
experiences shear (corresponding to larger average crit-
ical ERR, see Fig. 13). The larger the mode mixity,
the larger the change in facet nucleation SIF due to
mode-dependent fracture properties, which induces a
moderate change in the facet nucleation SIF minimum
(i.e. the facet nucleation apparent SIF) and correspond-
ing angle for intermediate mode mixities (β = 0.4,
Fig. 14b, e, h) and significant changes for larger mode
mixities (β = 0.8, Fig. 14c, f, i). Increasing the T-stress
magnitudes tends to increase the facet nucleation angle.
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Fig. 16 Normalized facet nucleation (dashed line) and straight
crack propagation (plain line) apparent SIF as a function of the
mode mixity obtained for a–c T3/σc = 0.014, d–f T3/σc =

0.055 and g–i T3/σc = 0.111 and a, d, g GIIIc/GIc = 2, b, e, h
GIIIc/GIc = 10 and c, f, i GIIIc/GIc = 50

Figure15 shows the facet nucleation angle [Eq. (31)]
and normalized facet extension along (Ox1) direction
variations as a function of the mode mixity obtained
for different T-stress magnitudes and GIIIc/GIc ratios.

For small mode mixities, failure either occurs by
crack propagation in the direction of the initial crack
(ϕ = 0◦) or by facet nucleation due to T-stress (ϕ =
90◦). For increasing mode mixities, the range of facet
nucleation angles obtained for several T-stress magni-

tudes decreases (Fig. 15a, b). Similarly, the normalized
initiation crack length range decreases with increas-
ing mode mixity and takes different values depend-
ing on failure being triggered by crack propagation
(�c/�mat ≈ 0.55) in the initial direction of facet nucle-
ation due to T-stress (�c/�mat ≈ 1.5) (Fig. 15c).

Configurations for which facet nucleation occurs
can be determined by comparing facet nucleation SIF
to straight crack propagation SIF for different mode
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Fig. 17 Domains in the
normalized T-stress as a
function of the mode mixity
space corresponding to facet
nucleation or straight crack
propagation for a
GIIIc/GIc = 2, b
GIIIc/GIc = 8, c
GIIIc/GIc = 10 and d
GIIIc/GIc = 50

mixities, T-stress magnitudes and GIIIc/GIc ratios, see
Fig. 16. Straight crack propagation remainsmore favor-
able than facet nucleation whatever the mode mixity
provided both T-stress magnitude and shear to open-
ing critical ERR ratio are sufficiently small (Fig. 16i,
a, b, d, e). On one hand, increasing the T-stress mag-
nitude decreases facet nucleation apparent SIF while
not influencing straight crack propagation apparent SIF
(see for instance Fig. 16a, d, g). Therefore, facet nucle-
ation becomesmore likely for sufficiently large T-stress
magnitudes for mode mixities up to a certain value that
increases with increasing T-stress magnitude. On the
other hand, increasing GIIIc/GIc increases the straight
crack propagation apparent SIF while not influencing
much facet nucleation apparent SIF (see for instance
Fig. 16d, e, f). Therefore, facet nucleation becomes
more likely for sufficiently largeGIIIc/GIc especially for
mode mixities larger than a certain value that decreases
with increasing GIIIc/GIc.

Configurations for which facet nucleation is more
favorable than straight crack propagation are finally
summarized in Fig. 17.

Increasing GIIIc/GIc ratio mainly tends to increase
straight crack propagation SIF, this increase beingmore
pronounced for larger mode mixities. As a conse-
quence, it tends to make facet nucleation more favor-
able than straight crack propagation for mode mixi-
ties larger than a given value depending on GIIIc/GIc.
The determination of the configurations for which facet
nucleaction ismore favorable than straight crack propa-
gation indicates that this phenomenon does not depend
on a threshold in terms of KIII/KI for GIIIc/GIc < 10
(Fig. 17a, b) or normalized T-stressmagnitude T3/σc >

0.075 (Fig. 17c, d). It means that facet nucleation actu-
ally depends on the material through the ratio between
shear and opening critical ERR and on the loading, not
only in terms of mode mixity but also in terms of T-
stress magnitude. The influence of the Poisson’s ratio
is finally shown on Fig. 17d, a similar influence of the
Poisson’s ratio being obtained for otherGIIIc/GIc ratios.
The same reasoning as previously is followed except
that ν varies, which results in a variation in the dimen-
sionless IERR (see functions given in the Appendix for
several Poisson’s ratio) and stress fields. The Poisson’s
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ratio has an influence on the boundary of the domain
corresponding to facet nucleation being more favor-
able than straight crack propagation. For β smaller
than ≈ 0.6, increasing the Poisson’s ratio results in
a decrease in the required T-stress magnitude for facet
initiation. For T/σc smaller than 0.05, increasing the
Poisson’s ratio results in increasing theminimummode
mixity for which facet nucleation occurs.

7 Conclusion

Considering that crack segmentation in mode I+ III
results from the nucleation and then propagation of
facets, it is essential to explain why the apparition of
facets is favored energetically in comparison to straight
propagation. Using the CC, we show that:

(i) In absence of T-stress and mode dependent fracture
toughness GIIIc/GIc, straight propagation should
occur whatever the mode mixity KIII/KI;

(ii) It is necessary to take into account jointly the con-
tribution of T-stress and mode dependent fracture
properties to be in line with experimental observa-
tions.

More precise outputs of the CC are that facet nucle-
ation:

(i) Cannot occur for too small T-stress magnitude and
GIIIc/GIc levels;

(ii) Becomes more favorable than straight crack prop-
agation either for sufficiently large T-stress mag-
nitude and small mode mixities or for sufficiently
large GIIIc/GIc and large mode mixities.

The physical ingredients behind these results are
twofold. First, increasing theT-stressmagnitudedecreases
the load needed for facet nucleation that makes them

more keen to appear. Second, a significant amount of
shear critical energy release rate GIIIc increases the
load required for straight crack propagation especially
for sufficiently large mode mixities, tending to dis-
advantage straight propagation. A perspective of this
work will be to design specific experiments to evalu-
ate these results, as well as evidencing the proposed
theory and its possible limitations based on existing
experiments in the literature. For instance, the com-
plexwedge and compressive loading proposed in Pham
and Ravi-Chandar (2016) is expected to induce a local
combinedmode I+ III andT-stress ahead of the primary
crack. Nevertheless, in other works, facet nucleation is
also observed under almost pure mode I configurations
(Lin et al. 2010; Ronsin et al. 2014), in which the T-
stress level might be negligible. In such configurations,
it will be necessary to evaluate if the proposed scenario
is sufficient to explain facet nucleation.
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Appendix

The functions Ai j , Bi ,C are given in Fig. 18 as a func-
tion ofϕ in complement of Fig. 3 for different Poisson’s
ratio between ν = 0 and ν = 0.48.
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Fig. 18 Variation of the
normalized IERR
coefficients as a function of
the crack orientation
obtained for a ν = 0, b
ν = 0.12, c ν = 0.24 and d
ν = 0.48
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