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A B S T R A C T

In recent years, the phase-field method has attracted a lot of attention and has emerged as one of the
most efficient tools for modeling fracture and phase transformation. The phase-field method is based on the
regularization of discontinuities which allows the resolution of complex problems using classical numerical
methods. A multiphase-field model which is essential for describing crack propagation in non-static heteroge-
neous materials is still missing. In this work, we fill this gap by combining the fracture phase-field approach
based on Griffith’s theory with the phase-field approach for diffusive phase transformation in viscoplastic
materials. Several benchmark examples of increasing complexity demonstrate, the effect of viscoplasticity and
diffusive phase transformation on fracture behavior based on the critical loading, energy density until failure
and crack topology. We show that viscoplastic activity at the crack tip mitigates the effect of pre-existing
defects on mechanical strength. In a heterogeneous case, it is shown that viscoplastic activity introduces an
intermediate fracture response between the reference behavior, which does not take into consideration the
phase transformation-induced residual stresses, and the elastic behavior, which integrates these residual stresses
by taking into account only the elasticity. The interaction between the heterogeneities and the crack topology
is also highlighted.
1. Introduction

One of the most feared failure modes in engineering is fracture as it
can occur suddenly and potentially lead to catastrophic consequences.
The combined action of mechanical stresses and phase transformations
can significantly affect the response of structures. For example, in case
of a loss of coolant accident in a pressurized water nuclear reactor,
an interaction between oxygen diffusion, oxidation, creep and cracking
phenomena is observed (Desquines et al., 2021; Chosson et al., 2016;
Thieurmel et al., 2019; Dominguez, 2018; Campello et al., 2017). Mod-
eling of the mechanical behavior coupled with the phase transformation
of a multilayer material is therefore an important issue. This work aims
at developing a numerical platform coupling nonlinear mechanical
behavior to phase transformation and fracture.

The phase-field approach is used to represent fracture and phase
transformation. This approach based on energy minimization lends it-
self well to numerical implementation and seems to be the simplest tool
for modeling multi-physics problems in a single framework (Wu et al.,
2020). The phase-field approach is well suited for phase transformation
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and easily allows the consideration of the diffusion of chemical species.
Regarding fracture, the phase-field approach is suitable for brittle frac-
ture. However, it is well known that ductile and brittle fracture involve
different mechanisms. In this work, the fracture phase-field approach
is chosen to represent both brittle and ductile fracture responses. The
description of the material aspects related to the ductile fracture is not
treated and it is assumed that the phases are homogeneous.

The phase-field approach is employed in order to deal with sin-
gularities such as fracture and phase transformation (Singer-Loginova
and Singer, 2008; Ambati et al., 2015b). It has become increasingly
popular in recent years due to its simplicity and flexibility. The main
idea behind the phase-field approach is to smooth singularities in order
to describe them with auxiliary scalar fields.

In the phase-field approach for phase transformation, the sharp
interface is replaced by a diffuse interface of non-zero thickness (𝛿).
With this regularization, the phases are described by a continuous
order parameter (𝜙) governing the local interface kinetics. This phase-
field approach has a decisive advantage compared to sharp interface
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Nomenclature

 History field
𝛿 Interface thickness (phase transition)
𝛾 Fracture surface density
𝜆𝑖, 𝜇𝑖 Lamé’s elastic parameters
𝜔 Interface energy
𝜙 Order parameter
𝜓 Helmholtz free energy density
𝜓+
0 Tensile component of the elastic strain

energy density
𝜓−
0 Compression component of the elastic

strain energy density
𝜓𝑐ℎ Chemical free energy density
𝜓𝑒𝑙 Stored elastic strain energy density
𝜓𝑐 Fracture threshold energy
𝝈 Cauchy stress tensor
𝜺 Total strain tensor
𝜺∗𝑖 Eigenstrain tensor
𝜺𝑒𝑙 Elastic strain tensor
𝜺𝑣𝑝𝑖 Viscoplastic strain tensor
𝒇𝑣 Body force
𝒕 Boundary force
𝒖 Displacement field
𝐴𝑖, 𝑛𝑖 Norton’s viscoplastic parameters
𝑐 Concentration field
𝑑 Damage variable
𝑔(𝑑) Degradation function
𝑔𝑐 Critical fracture surface energy
𝑘𝑖 Curvature of the free energy density
𝑙𝑐 Fracture length scale
𝑝 Numerical stability number

models as explicit interface tracking is not required. Sharp interface
models are not suitable when dealing with complex morphological
evolutions because the interface tracking at each time step becomes
computationally quite unfeasible.

The phase-field approach for phase transformation can be used to
model both microstructures and mesoscale complex morphological evo-
lutions such as grain-boundary evolution (Suwa et al., 2007; Moelans
et al., 2008; Bhattacharya et al., 2020) and solidification (Labergère
et al., 2021; Asle Zaeem et al., 2013). It can also be coupled with other
physical ingredients such as elasticity (Düsing and Mahnken, 2019;
Wang et al., 1993b; Dreyer and Müller, 2000), plasticity (Ammar et al.,
2009a; Zhao et al., 2018) and viscoplasticity (de Rancourt et al., 2016;
Cottura et al., 2012).

Similarly, in the fracture phase-field approach, the sharp crack is
replaced by a regularized diffused damage. In order to mathematically
tackle the problem, a length scale (𝑙𝑐) is introduced, which controls the
magnitude of the damage penetration into a solid phase. A diffuse dam-
age variable (𝑑) connects broken and unbroken regions. The fracture
phase-field approach is based on the original description of Griffith for
homogeneous brittle materials. Griffith (1924, 1921) suggested that a
pre-existing crack can only propagate if the released potential energy
per unit surface is greater than a critical value. The critical energy
release rate is postulated to be a material constant that indicates its
fracture toughness. The main advantage of the fracture phase-field
approach is its simplicity. Compared to discrete methods such as the
cohesive zone model (Zhou and Molinari, 2004; Falk et al., 2001),
the so-called strong discontinuity technique (Huespe et al., 2006) or
2

the extended finite element method (Elguedj et al., 2006; Moës et al.,
1999; Réthoré et al., 2005; Gravouil et al., 2011), the diffused damage
models (such as the phase-field or the thick level set approach (Moës
et al., 2011)) provide a suitable framework for solving the problem
with classical numerical methods without requiring special criteria or
numerical tools. Ambati et al. (2015b) gives a detailed overview of
the existing brittle fracture phase-field models. The fracture phase-
field provides a simulation framework to adequately describe crack
initiation, propagation, curvilinear crack paths, branching or coales-
cence (Molnár and Gravouil, 2017). The effect of plasticity (Molnár
et al., 2020a; Zhang et al., 2018; Duda et al., 2015; Ambati et al.,
2015a), viscoplasticity (Shanthraj et al., 2016), hyperelasticity (Peng
et al., 2020; Yin et al., 2019; Mandal et al., 2020), fatigue (Lo et al.,
2019; Mesgarnejad et al., 2019), and chemical diffusion (Miehe et al.,
2016b; Schneider et al., 2014; Nguyen et al., 2018) can also be included
in a thermodynamically consistent manner.

The diffusive phase transformations that heterogeneous materials
undergo can significantly affect their fracture behavior. However, a
general approach to study the fracture behavior of these non-static het-
erogeneous materials is still missing. Schneider et al. (2016) proposed
a multiphase-field model that combines the fracture phase-field and the
phase-field for the phase transformation process, but the application of
this model is limited to diffusionless transformation such as martensitic
transformation as the diffusion process is not modeled.

In this work, we combine the fracture phase-field approach with
the phase-field approach for diffusive phase transformation processes
to study the fracture behavior of solid-state materials undergoing
mesoscale diffusive phase transformations. Compared to previous works
of Schneider et al. (2016), the proposed model is more generalized
by including in the formulation the chemical diffusion which is the
driving force of the diffusive phase transformation. Four physical phe-
nomena are therefore considered including fracture, diffusion, phase
transformation and viscoplasticity. The simultaneous consideration of
these four physics is important for the study of the combined action
of a mechanical stress and an aggressive environment encountered
in several applications in industry. For example, the phenomenon
of loss of coolant accident in a nuclear reactor (Campello et al.,
2017; Desquines et al., 2021; Chosson et al., 2016; Dominguez, 2018;
Thieurmel et al., 2019) or the well-known phenomenon of stress
corrosion cracking (Sieradzki and Newman, 1987). The formulation of
the model is carried out in an appropriate framework that easily allows
its extension with new physical ingredients or additional couplings.

The present paper is structured as follows. Section 2 presents the
consistent framework combining the various physical phenomena being
modeled (fracture, diffusion, phase transformation and viscoplastic-
ity) into a single multiphase-field model. The theoretical background
and modeled couplings are specified. In Section 3, through several
benchmark examples of increasing complexity, the proposed model
is used to investigate the effect of viscoplastic activity and diffuse
phase transformation on the fracture behavior. The impact on fracture
behavior is assessed by examining the critical loading, energy density
until failure and crack topology. Finally, Section 4 concludes this work.

2. Methods

The phase-field approach for fracture and phase transformation are
based on the diffuse representation of the discontinuity in the volume
as illustrated in Fig. 1. For fracture, we define a diffuse damage variable
𝑑 which connects broken (𝑑 = 1) and unbroken (𝑑 = 0) regions.
An internal length scale (𝑙𝑐) controls the magnitude of the damage
penetration. In the same way, an order parameter (𝜙) is used to describe
the phase 𝑎 (𝜙 = 1) and phase 𝑏 (𝜙 = 0) regions of a binary material.
A non-zero interface thickness (𝛿) controls the width of the smooth

transition between both solid phases.
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Fig. 1. (a) Schematic illustration of the idealized physical problem and its corresponding regularization (b). 𝑙𝑐 and 𝛿 respectively control the width of the damaged and the
interface regions.
The model developed in this work makes it possible to simultane-
ously solve the displacement problem with viscoplastic activity, the
mass transport or diffusion, the fracture and the phase transformation
problems. In general, the total energy of the multi-physics problem
composed of a mechanical (𝒖), chemical (𝑐ℎ) and fracture (𝑑) part
can be written as :

 (𝛁𝒖, 𝜙, 𝑐, 𝑑) = 𝒖(𝛁𝒖, 𝜙, 𝑐, 𝑑) + 𝑐ℎ(𝛁𝒖, 𝜙, 𝑐, 𝑑) + 𝑑 (𝛁𝒖, 𝜙, 𝑐, 𝑑) (1)

where 𝒖, 𝜙, 𝑐, 𝑑 are respectively the displacement vector, the order
parameter, the concentration of the diffusing chemical species and the
damage variable. Eq. (1) is written in the general case considering all
possible interaction between the modeled physics. In the following,
only the couplings summarized in Fig. 2 are considered. The damage
reduces the stiffness of the material, while the elastic (undamaged)
strain energy contributes to the crack surface opening. The phase trans-
formation is driven by the free energy which is composed of the stored
elastic strain energy and chemical energy. In the interface where the
two phases coexist, a mixing or interpolation method is used to include
the energy contributions of both phases. Several couplings are taken
into account but the list is not exhaustive. However, the formulation is
proposed in a framework that allows the introduction of new couplings
in a relatively easy way. The effect of the diffusing species on the
mechanical and fracture properties (Le Saux et al., 2018; Nguyen et al.,
2017) and the coupling between diffusion and viscoplasticity (Le Claire
and Rabinovitch, 1981, 1982, 1983) are not taken into account. We
also neglect the explicit coupling between phase transformation and
fracture, thus their constitutive laws can be formulated separately.
Griffith’s theory (Griffith, 1921) is employed for the fracture phase-field
approach, while the Allen–Cahn theory (Allen and Cahn, 1979) is used
for phase transformation phase-field.

In fracture phase-field, the mechanical energy is used to control
crack surface opening. The consideration of the contribution of plastic
or viscoplastic dissipated energy to fracture is controversial in the
literature (Molnár et al., 2020a). Some authors do not include the
effect of plastic (Ambati et al., 2015a) or viscoplastic (Shanthraj et al.,
2016) energy on the crack surface opening while others do (Fang et al.,
2019; Badnava et al., 2017). This is a question of scale. Usually, it
is assumed that very small-scale plasticity can cause void formation,
leading to macroscopic cracks, for example, when the characteristic size
of the model approaches the grain size. In this work, only the stored
elastic strain energy contributes to the crack surface opening while
viscoplasticity remains an independent dissipation.

In phase transformation phase-field, the so-called free energy, which
contains both stored elastic strain energy and chemical energy, is
used to govern the phase transformation. The motivation for adding
a mechanical effect in the phase transformation problem comes from
the idea that a strain accommodation leads to a development of certain
optimal microstructures (Khachaturyan and Shatalov, 1969).

In the case of an unstable crack, the monolithic solution of the
fully coupled displacement and fracture problem becomes unstable.
3

Therefore, the displacement problem is weakly coupled to the evolution
of fracture topology using the staggered scheme proposed by Miehe
et al. (2010a). As shown in Fig. 3, at each increment the displacement
problem is solved on the basis of the last converged fracture topology
and vice versa.

2.1. Displacement problem

The displacement problem is solved under the following assump-
tions:

• damage only reduces the tensile stiffness, the compressive stiff-
ness is not affected,

• the newly formed phase inherits the total viscoplastic strain of the
parent phase,

• there is no elastic limit in viscoplasticity,
• the problem is restricted to small deformations.

The energy of the displacement problem is formulated as follows:

𝒖 (𝛁𝒖, 𝜙, 𝑑) = 𝐸𝑒𝑥𝑡 − 𝐸𝑒𝑙(𝛁𝒖, 𝜙, 𝑑) −𝛺𝑢(𝛁𝒖, 𝜙, 𝑑), (2)

where 𝒖 is the displacement field. 𝐸𝑒𝑥𝑡, 𝐸𝑒𝑙 and 𝛺𝒖 are respectively
the external work, the stored elastic strain energy and the viscoplastic
strain energy.

The external work done by the body (𝒇𝑣) and boundary (𝒕) forces
illustrated in Fig. 3 is given by:

𝐸𝑒𝑥𝑡 = ∫𝑉
(𝒇𝑣 ⋅ 𝒖)𝑑𝑉 + ∫𝜕𝑉

(𝒕 ⋅ 𝒖)𝑑𝑆. (3)

The stored elastic energy is split into tensile (𝜓+
0 ) and compression

(𝜓−
0 ) components (Bernard et al., 2012):

𝐸𝑒𝑙(𝛁𝒖, 𝜙, 𝑑) = ∫𝑉
𝜓𝑒𝑙(𝛁𝒖, 𝜙, 𝑑)𝑑𝑉 (4)

𝜓𝑒𝑙 (𝛁𝒖, 𝜙, 𝑑) = 𝑔 (𝑑)𝜓+
0
(

𝜺𝑒𝑙(𝛁𝒖, 𝜙)
)

+ 𝜓−
0
(

𝜺𝑒𝑙(𝛁𝒖, 𝜙)
)

. (5)

The decomposition of the elastic strain energy allows a degradation
only in tension. 𝑔(𝑑) is the degradation function:

𝑔(𝑑) = (1 − 𝑑)2 + 𝑝, (6)

where 𝑝 is a small number responsible for numerical stability.
The degraded Cauchy stress tensor is then given by :

𝝈 = 𝑔(𝑑)
𝜕𝜓+

0

𝜕𝜺𝑒𝑙
+
𝜕𝜓−

0

𝜕𝜺𝑒𝑙
, (7)

where 𝜺𝑒𝑙 is the elastic strain tensor. The degradation function directly
acts on the tensile component of the stress tensor.

The total strain field (𝜺) is divided into elastic (𝜺𝑒𝑙), viscoplastic (𝜺𝑣𝑝)
and eigenstrain (𝜺∗) components:

𝜺 = 𝜺𝑒𝑙 + 𝜺𝑣𝑝 + 𝜺∗. (8)
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Fig. 2. Overview of the modeled couplings.
Fig. 3. Illustration of the staggered scheme for solving the fracture and displacement problems in elastoviscoplastic heterogeneous solids.
In this work, 𝜺∗ represents the volumetric change due to the phase
transformation. Assuming small deformations, the strain tensor is de-
fined by the symmetric part of the displacement gradient:

𝜺 = 𝛁𝑠𝒖. (9)

In the interface, a mixing scheme is applied to determine the effective
behavior. Several mixing schemes exist in the literature (Voigt, 1928;
Reuss and Angew, 1929; Ammar et al., 2009a; Durga et al., 2013;
Mosler et al., 2014; Wang and Khachaturyan, 1995). Voigt’s, Reuss’s
and Khachaturyan’s schemes are the most used. For the two former
ones, the equivalent elastic strain is calculated from the equivalent
compliance tensor. In a damaged region (𝑑 = 1), this compliance tensor
is no longer well defined and tends towards infinity which can therefore
induce numerical convergence issues.

Herein, we have retained Khachaturyan’s scheme, which does not
need this compliance tensor to compute equivalent elastic strain. There-
fore, the total strain is assumed to be identical in both coexisting phases
while the mixture rules are applied to viscoplastic strain components,
eigenstrains and to Lamé parameters (𝜆, 𝜇):

𝜺 = 𝜺𝑎 = 𝜺𝑏, (10)

𝜺𝑣𝑝(𝛁𝒖, 𝜙) = ℎ(𝜙)𝜺𝑣𝑝(𝛁𝒖) + ℎ(𝜙)𝜺𝑣𝑝(𝛁𝒖), (11)
4

𝑎 𝑏
𝜺∗(𝜙) = ℎ(𝜙)𝜺∗𝑎 + ℎ(𝜙)𝜺
∗
𝑏 , (12)

𝜆(𝜙) = ℎ(𝜙)𝜆𝑎 + ℎ(𝜙)𝜆𝑏 (13.1)

𝜇(𝜙) = ℎ(𝜙)𝜇𝑎 + ℎ(𝜙)𝜇𝑏. (13.2)

The subscripts 𝑎 and 𝑏 indicate the two coexisting phases. The standard
choice of the homogenization function ℎ(𝜙) = 1 − ℎ(𝜙) is (Wang et al.,
1993a):

ℎ(𝜙) = 𝜙2(3 − 2𝜙). (14)

This mixing scheme, referred to as interpolated scheme by Ammar
et al. (2014), assumes that the newly formed phase inherits the total
viscoplastic strain of the parent phase in contrast to the homogenization
scheme of Voigt (1928) and Reuss and Angew (1929).

The decomposition of elastic energy is given by Bernard et al.
(2012):

𝜓𝑒𝑙
(

𝜺𝑒𝑙 , 𝜙, 𝑑
)

= 𝜇(𝜙)
3
∑

𝑖=1

[

⟨𝜺𝑖⟩2− + 𝑔(𝑑)⟨𝜺𝑖⟩2+
]

+
𝜆(𝜙)
2

[

𝑔(𝑑)⟨𝑡𝑟(𝜺)⟩2+

+ ⟨𝑡𝑟(𝜺)⟩2−
]

. (15)

For the practical implementation of this decomposition, readers are
referred to previous work by Molnár et al. (2020a).



International Journal of Solids and Structures 252 (2022) 111757E. Djeumen et al.

𝜓

𝜓

T
a

𝛺

w



T
d
h
d
t
T
r



A
c

𝛿

𝛁

2

m
e
T
a
d



w
e
t
i

𝜓

i
o
v
e
d
e
e
d

m
p

𝜓

F
p
𝑐

𝜓

As for the elastic strain energy in Eq. (4), the viscoplastic strain
energy is expressed as:

𝛺𝒖(𝛁𝒖, 𝜙, 𝑑) = ∫𝑉 ∫𝑡
(𝜓̇𝑣𝑝(𝛁𝒖, 𝜙, 𝑑)) 𝑑𝑡𝑑𝑉 , (16)

̇ 𝑣𝑝(𝛁𝒖, 𝜙, 𝑑) = 𝝈(𝛁𝒖, 𝑑)∶𝜺̇𝑣𝑝(𝛁𝒖, 𝜙). (17)

The viscoplastic dissipation is calculated from the degraded stress
tensor (see Eq. (7)). Since viscoplastic strain does not induce a change
in volume, the viscoplastic energy can be simplified according to:

̇ 𝑣𝑝(𝛁𝒖, 𝜙) = 𝜎𝑣𝑚(𝑑)𝜀̇𝑣𝑝𝑣𝑚(𝛁𝒖, 𝜙), (18)

where 𝜎𝑣𝑚 and 𝜀̇𝑣𝑝𝑣𝑚 are respectively the von Mises stress and equivalent
viscoplastic strain rate. An elastic limit is not integrated into this work.
The equivalent viscoplastic strain rate in each of the phases 𝑎, 𝑏 is
described by Norton’s law:

𝜀̇𝑣𝑝𝑣𝑚,𝑖 = 𝐴𝑖𝝈
𝑛𝑖
𝑣𝑚, (19)

where 𝐴𝑖 and 𝑛𝑖 are Norton’s material parameters. Note that in Eq. (19)
the equivalent viscoplastic strain rate in each of the phases is calculated
from the equivalent von Mises stress. The rule of mixture used in this
work does not give access to the stress tensor of each phase.

By taking the variation of Eq. (2), the corresponding strong form of
the displacement problem can be obtained:

𝛿𝐿𝒖 = 0 ∀𝛿𝒖 → 𝛁 ⋅ 𝝈 − 𝒇𝑣 = 0 in 𝑉 , (20.1)

𝝈 ⋅ 𝒏 = 𝒕 on 𝛤𝑁 , (20.2)

𝒖 = 𝒖 on 𝛤𝒖. (20.3)

2.2. Fracture problem

The fracture problem is formulated under the following main as-
sumptions:

• the crack surface opening is driven by the tensile elastic (undam-
aged) strain energy,

• the length scale (𝑙𝑐 see Fig. 1(b)) is constant in the whole domain,
• the critical energy release rate per unit surface (𝑔𝑐) is treated as

a material parameter,
• the damage is irreversible.

The energy functional to solve the crack topology is formulated as
follows:

𝑑 (𝛁𝒖, 𝜙, 𝑑) = 𝛺𝑑 (𝜙, 𝑑,∇𝑑) + 𝑇 (𝜙, 𝑑) − 𝐸𝑒𝑙 (𝛁𝒖, 𝜙, 𝑑) , (21)

where 𝛺𝑑 is the fracture energy and 𝑇 is the threshold function.
he regularized phase-field Griffith fracture energy can be expressed
s (Bourdin et al., 2000):

𝑑 (𝜙, 𝑑) = ∫𝛤
𝑔𝑐 (𝜙)𝑑𝛤≈∫𝑉

𝑔𝑐 (𝜙)𝛾(𝑑)𝑑𝑉 , (22)

𝛾(𝑑,𝛁𝑑) = 1
2𝑙𝑐

𝑑2 +
𝑙𝑐
2
|𝛁𝑑|2, (23)

where 𝛾 is the fracture energy density and 𝑔𝑐 the equivalent surface
energy needed to create a unit fracture surface and 𝑙𝑐 is the length scale
parameter which controls the scale of damage penetration. For details
on this approximation, readers are invited to consult previous works
of Miehe et al. (2010a) or Molnár and Gravouil (2017).

The work of Molnár et al. (2020a) shows a unique correlation
between 𝑙𝑐 and the material’s strength, based on the maximum load and
the crack topology, which allows us to give the length scale parameter
physical meaning. However initially, 𝑙𝑐 is used as a numerical aid.
Therefore, the mixture rule is applied only to 𝑔𝑐 but not to 𝑙𝑐 :

𝑔 (𝜙) = ℎ(𝜙)𝑔 + ℎ(𝜙)𝑔 (24)
5

𝑐 𝑐𝑎 𝑐𝑏
The threshold function in Eq. (21) is chosen as (Molnár et al., 2020a;
Miehe et al., 2016b):

𝑇 (𝑑) = ∫𝑉

[

(1 − 𝑔 (𝑑))𝜓𝑐 (𝜙)
]

𝑑𝑉 , (25)

ith 𝜓𝑐 (𝜙) =
𝑔𝑐 (𝜙)
2𝑙𝑐

.
In practice, to solve the fracture topology, the elastic strain energy

in Eq. (21) is replaced by a so-called history field  (Miehe et al.,
2010a) to prevent crack healing:

0 = 0, (26.1)

𝑛+1 = max
{

𝜓+
0 (𝛁𝒖, 𝜙) − 𝜓𝑐 (𝜙)

𝑛
(26.2)

his history field () helps to satisfy the Karush–Kuhn–Tucker con-
itions (Singh et al., 2016). In addition to the introduction of the
istory field, the damage irreversibility is explicitly enforced in the
isplacement problem (𝑑̇ ≥ 0) as there is no mathematical proof that
he history field alone is sufficient to ensure damage irreversibility.
herefore, the energy functional to solve the crack topology can be
ewritten as:

𝑑 (𝛁𝒖, 𝜙, 𝑑) = 𝛺𝑑 − ∫𝑉

[

𝑔 (𝑑) (𝛁𝒖, 𝜙) − 𝜓𝑐 (𝜙)
]

𝑑𝑉 . (27)

s for the displacement problem the strong form of fracture topology
an be deduced as:

𝑑 = 0 ∀𝛿𝑑→
𝑔𝑐
𝑙𝑐
(𝑑 − 𝑙2𝑐𝛥𝑑) = 2(1 − 𝑑) in 𝑉 , (28.1)

𝑑 ⋅ 𝒏 = 0 on 𝛤 , (28.2)

.3. Coupled diffusion-phase transformation problem

The coupled problem of diffusion and phase transformation is for-
ulated by assuming that the diffusion of chemical species and the

ffect of the elastic energy on the phase transformation are isotropic.
he starting point for deriving the evolution laws of the diffusion
nd phase transformation problem is the total free energy functional
efined by :

𝑐ℎ(𝛁𝒖, 𝑐, 𝜙, 𝑑) = ∫𝑉
𝜓(𝛁𝒖, 𝑐, 𝜙, 𝑑)𝑑𝑉 , (29)

here 𝜓 is the Helmholtz free energy density. 𝜓 is the amount of
nergy stored in the system per unit volume. Thus, 𝜓 is made up of
he stored elastic strain energy (𝜓𝑒𝑙), the chemical energy (𝜓𝑐ℎ) and
nterface energy (𝜓 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒) contributions (de Rancourt et al., 2016):

(𝛁𝒖, 𝑐, 𝜙, 𝑑) = 𝜓𝑒𝑙(𝛁𝒖, 𝜙, 𝑑) + 𝜓𝑐ℎ(𝑐, 𝜙) + 𝜓 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝜙,∇𝜙). (30)

The viscoplastic energy in Eq. (16) as well as the fracture energy
n Eq. (22) are dissipated energies and therefore do not form part
f the free energy in Eq. (30). Although the effects of fracture and
iscoplasticity do not appear explicitly in Eq. (30), they have an indirect
ffect through the stored elastic strain energy. Indeed, the energy
issipated by fracture and viscoplasticity comes from the stored elastic
nergy. By dissipating the stored elastic energy that is part of the free
nergy, fracture and viscoplasticity contribute indirectly to the coupled
iffusion-phase transformation problem.

The equivalent chemical free energy density (𝜓𝑐ℎ) is obtained by a
ixing law on the homogeneous chemical free energy densities of both
hases (𝜓𝑐ℎ𝑖 ) (Kim et al., 1998):

𝑐ℎ(𝑐, 𝜙) = ℎ(𝜙)𝜓𝑐ℎ𝑎 (𝑐) + ℎ(𝜙)𝜓𝑐ℎ𝑏 . (31)

or the sake of simplicity, the chemical free energy density 𝜓𝑐ℎ𝑖 of each
hase 𝑖 = {𝑎, 𝑏} is chosen as a square function of the concentration
(Echebarria et al., 2004):

𝑐ℎ(𝑐) = 1𝑘 (𝑐 − 𝑐 )2, (32)
𝑖 2 𝑖 𝑖
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where 𝑘𝑖, and 𝑐𝑖 are respectively the curvature of the free energy density
and the equilibrium concentration of each phase.

The interface contribution 𝜓 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 is given by Kim et al. (1998):

𝜓 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝜙,∇𝜙) = 𝑊 𝑔𝑐ℎ(𝜙) +
𝛼
2
𝛁𝜙 ⋅ 𝛁𝜙, (33)

where 𝑊 is the height of the energy barrier accounting for the free
energy penalty of the interface, 𝛼 is the coefficient of the gradient
term of the interface energy in Eq. (33) and 𝑔𝑐ℎ(𝜙) is the double well
potential (Raabe et al., 2004):

𝑔𝑐ℎ(𝜙) = 𝜙2(1 − 𝜙)2. (34)

Fig. 4 illustrates this Helmholtz free energy density in Eq. (30)
without the elastic part. There are two local minima at 𝑐 = 𝑐𝑎 and
𝑐 = 𝑐𝑏 which correspond to the equilibrium concentrations of each
phase. Fig. 4(b) displays the 2D projection onto the (𝜓 −𝑐) plane of the
3D representation in Fig. 4(a). The black curve represents the chemical
free energy density of phase 𝑏 (𝜙 = 0) and the red curve corresponds to
the free energy density of phase 𝑎 (𝜙 = 1).

The diffusion and phase transformation problem are governed by
the corresponding driving force defined as the functional derivative of
the total free energy. We obtain the Cahn–Hilliard equation by deriving
the total free energy in Eq. (29) with respect to 𝑐:

𝜕𝑐(𝒙, 𝑡)
𝜕𝑡

= 𝛁 ⋅
(

−𝐿(𝜙)𝛁 ⋅
( 𝛿𝐹
𝛿𝑐

))

= 𝛁 ⋅
(

−𝐿(𝜙)𝛁
(

𝜕𝜓
𝜕𝑐

))

. (35)

The concentration (𝑐) is a conserved field for which the spatial average
is constant over time. Boundary conditions are used to take into account
the exchanges on the edges. In the same way, the Allen–Cahn equation
is obtained by deriving the total free energy in Eq. (29) with respect to
𝜙. However, the order parameter (𝜙) is not a conserved field:
𝜕𝜙(𝒙, 𝑡)
𝜕𝑡

=𝑀 𝛿𝐹
𝛿𝜙

=𝑀
𝜕𝜓
𝜕𝜙

− 𝛁 ⋅
𝜕𝜓
𝜕𝛁𝜙

, (36)

where 𝑀 is the interface mobility parameter which must be as large
as possible in the case of diffusion-controlled phase transformation (de
Rancourt et al., 2016), 𝐿(𝜙) is the homogenized diffusion coefficient
(Onsager coefficient) given by Ammar et al. (2009a):

𝐿(𝜙) = ℎ(𝜙)
𝐷𝑎
𝑘𝑎

+ ℎ(𝜙)
𝐷𝑏
𝑘𝑏
, (37)

where 𝐷𝑖 is the diffusion coefficient of the phases. 𝐿(𝜙) is chosen so
as to recover Fick’s law in a homogeneous case. For a homogeneous
material (𝜙 = 0), Eq. (35) is equivalent to Fick’s law:

𝜕𝑐
𝜕𝑡

= 𝛁 ⋅
(

−𝐿(0)𝛁
(

𝜕𝜓
𝜕𝑐

(0)
))

(38.1)

= 𝛁 ⋅
(

−
𝐷𝑏
𝑘𝑏

𝛁
(

𝑘𝑏(𝑐 − 𝑐𝑏)
)

)

(38.2)

= −𝐷𝑏𝛥𝑐. (38.3)

The interface energy (𝜔) and the interface thickness (𝛿) (see Fig. 1)
can be deduced from 𝛼 and 𝑊 by Ammar et al. (2009a), Kim et al.
(1998):

𝜔 =

√

𝛼𝑊

3
√

2
, (39)

𝛿 = 𝜃
√

2𝛼
𝑊
, (40.1)

𝜃 = 𝑙𝑛
(

1 − 𝜂
𝜂

)

. (40.2)

Eq. (40.1) is established assuming that the interface region ranges
from 𝜙 = 𝜅 to 𝜙 = 1 − 𝜅. In this work, 𝜅 = 0.05 was chosen.

To be consistent, the model must verify the laws of thermodynam-
ics. A variation in 𝑔𝑐 during a fracture process can compromise the
energy balance and thus violate the first principle of thermodynamics.
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Fig. 4. Illustration of the chemical free energy density.

This problem is observed in phenomenological phase-field fatigue mod-
els (Carrara et al., 2020) and rate-dependent fracture (Yin et al., 2020),
where the authors redefined the dissipation rate. Thus the overall
fracture surface is no more the measure of dissipated energy in fracture.
The criterion 𝑑̇ > 0 explicitly imposed can also affect the energy balance
if 𝑔𝑐 varies. It is also important to recall that the fracture threshold
energy introduced in Eq. (21), which has no real physical basis, can
also be considered as a violation of thermodynamic consistency. The
second law of thermodynamics is discussed in detail in Appendix A.

2.4. Staggered time-integration algorithm

The proposed model has been implemented in the commercial
Abaqus finite element code through a UEL routine. The flowchart in
Fig. 5 shows the basic incrementation process. At each increment,
the displacement problem, diffusion problem and phase transformation
problem are solved together on the basis of the last converged fracture
topology and vice versa. A Newton–Raphson method can be used to
solve the global problem iteratively:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K𝒖𝒖 K𝒖𝜙 0 0

K𝜙𝒖 K𝜙𝜙 K𝜙𝑐 0

0 K𝑐𝜙 K𝑐𝑐 0

0 0 0 K𝑑𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒖𝑛+1

𝝓𝑛+1

𝒄𝑛+1

𝒅𝑛+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒓𝒖𝑛

𝒓𝝓𝑛

𝒓𝒄𝑛

𝒓𝒅𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (41)

where, K𝑖𝑗 are elementary stiffness matrices, 𝒖𝑛+1, 𝒄𝑛+1, 𝝓𝑛+1 and 𝒅𝑛+1
are the new nodal solutions at 𝑡𝑛+1. 𝒓𝒖𝑛 , 𝒓𝒄𝑛 , 𝒓𝝓𝑛 and 𝒓𝒅𝑛 are residues.
The finite element formulation of the present model is detailed in
Appendix B.
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Fig. 5. Flowchart of the staggered algorithm used to solve the multi-physics problem
in Abaqus.

Cracking and viscoplasticity do not occur on the same time scale.
Therefore, an adaptive time step control is required to make the simu-
lation computationally feasible. The time step was automatically con-
trolled by the local tensile elastic strain energy increment:

𝑑 ≤ 𝜂𝜓𝑐 . (42)

This allows the time step to be increased until crack initiation is
reached. In the case of unstable crack propagation, the local tensile
elastic strain energy at the crack tip becomes independent of the time
step which is then reduced to a minimum value of 𝑑𝑡 = 10−9 s. This
way, the unstable crack propagation is detected precisely. More details
on this automatic time step control based on the energy constraint can
be found in Molnár et al. (2020b).

2.5. Model testing strategy

The implemented model is tested by examining quantities that
describe the fracture response of a structure. As shown in Fig. 6, the
critical load (𝜎𝑐) is defined as the maximum amount of tensile stress
that the material can withstand before failure. The energy density until
failure (𝑈𝑡) gives an indication of the toughness of a structure. 𝑈𝑡
represents the area below the stress–strain curve:

𝑈𝑡 = ∫

𝜀𝑓

0
𝜎𝑑𝜀, (43)

where 𝜀𝑓 is the strain at failure. A Brittle Response (BR) represents a
behavior characterized by a high value of 𝜎𝑐 and a low value of 𝑈𝑡,
while Ductile Response (DR) is a behavior characterized by a low value
of 𝜎𝑐 and a high value of 𝑈𝑡.

3. Examples and results

This section analyzes the effect of viscoplasticity and diffusive phase
transformation on the critical load, energy density until failure and
crack topology using examples of increasing complexity. In Section 3.1,
it is shown that the proposed model is able to simulate some well-
known behaviors for viscoplastic solids, such as ductile failure at low
strain rates and brittle failure at high strain rates. The role of viscoplas-
ticity at the crack tip is also highlighted in the case of the simple
extension (mode I). From Section 3.2 to Section 3.4, the model is
exploited to study the fracture behavior in a heterogeneous solid. The
case of a rigid layer growing on a soft matrix is discussed in Section 3.2.
The effect of phase transformations and the internal stresses they gen-
erate are illustrated. Section 3.3 deals with the fracture behavior of a
heterogeneous solid consisting of an inclusion evolving in a matrix. The
effect of the stiffness ratio between the inclusion and the matrix on the
crack topology is presented. The case of several randomly distributed
inclusions in the matrix is treated in Section 3.4.
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Fig. 6. Stress–strain curves for Brittle Response (BR) and Ductile Response (DR).

Table 1
Definitions of the dimensionless parameters.

Physical Dimensionless

Length: 𝑙 [m] 𝑙 = 𝑙
𝐿

Times: 𝑡 [s] 𝑡 = 𝑡
𝜏

Mechanical properties (n is the Norton’s exponent)

Young’s modulus: 𝐸 [Pa] 𝐸̃ = 𝐸
𝐸𝑑

Norton’s constant: 𝐴 [J−𝑛 m3𝑛 s−1] 𝐴̃ = 𝐴 ⋅ 𝐸𝑛
𝑑 ⋅ 𝜏

Fracture surface energy: 𝑔𝑐 [J m−2] 𝑔𝑐 =
𝑔𝑐

𝐸𝑑 ⋅ 𝐿

Fracture length scale: 𝑙𝑐 [m] 𝑙𝑐 =
𝑙𝑐
𝐿

Chemical properties

Concentration: 𝑐 𝑐 = 𝑐
𝑐𝑎 − 𝑐𝑏

Interface energy: 𝜔 [J m−2] 𝜔̃ = 𝜔
𝐸𝑑 ⋅ 𝐿

Interface thickness: 𝛿 [m] 𝛿 = 𝛿
𝐿

Interface mobility: 𝑀 [J−1 m3 s−1] 𝑀̃ =𝑀 ⋅ 𝐸𝑑 ⋅ 𝜏

Diffusivity: 𝐷 [m2 s−1] 𝐷̃ = 𝐷 ⋅ 𝜏
𝐿2

Chemical free energy curvature: 𝑘 [J m−3] 𝑘̃ = 𝑘
𝐸𝑑

Parameters used for the simulations are dimensionless so that the
results can be extrapolated to other sets of parameters. The length, time
and energy density scales are defined respectively by the size of the
system 𝐿, the characteristic diffusion time 𝜏 = 𝐿2∕max(𝐷𝑖) and the
chemical free energy density curvature 𝐸𝑑 = 𝛽min(𝑘𝑖). Here, 𝛽 is an
arbitrary positive constant. The concentrations are also scaled by the
difference between the equilibrium concentrations (𝑐𝑎 − 𝑐𝑏) of the two
phases (de Rancourt et al., 2016). Parameters to be scaled, denoted with
tildes, are summarized in Table 1.

All presented results are dimensionless but for the sake of clarity the
tilde symbol has been omitted. The simulations are carried out under
plane strain conditions.

3.1. Competition between fracture and viscoplasticity

The proposed phase-field model does not explicitly predict a cou-
pling between fracture and viscoplasticity. However, these two phe-
nomena are indirectly linked through the elastic strain energy in Eq. (4)
that can be dissipated either by cracking or by viscoplasticity.



International Journal of Solids and Structures 252 (2022) 111757E. Djeumen et al.
3.1.1. Homogeneous solution
A single 2𝐷 homogeneous plane strain element is the simplest

case, where the interaction between fracture and viscoplasticity can be
understood. A square plate with dimensions of 1 × 1 is subjected to a
simple shear strain rate by moving its top side in the 𝑥 direction while
its bottom side is fixed in both 𝑥 and 𝑦 directions. Young’s modulus was
set to 𝐸 = 210 with 𝜈 = 0.3, 𝑔𝑐 = 2 × 10−3 and 𝑙𝑐 = 2 × 10−4. The energy
increment constraint in Eq. (42) was set to 𝜂 = 1%. Only cracking and
viscoplasticity are considered in this example.

Regardless of cracking, the viscoplastic problem can be solved
analytically. By combining Eqs. (7) and (15) which allow to calculate
the stress with Norton’s law in Eq. (18) in the case of a pure shear
in a homogeneous solid, we obtain the following differential scalar
equation:

𝜏̇𝑥𝑦 = 𝜇
(

𝛾̇𝑥𝑦 − 𝐴(
√

3)𝑛+1𝜏𝑛𝑥𝑦
)

, (44)

where 𝜇 = 𝐸
2(1+𝜈) is the shear modulus. The steady shear stress (𝜏∞𝑥𝑦)

described by 𝜏̇𝑥𝑦 = 0 can be deduced from Eq. (44) by:

𝜏∞𝑥𝑦 = 3
− 𝑛 + 1

2𝑛 ⋅
( 𝛾̇𝑥𝑦
𝐴

)

1
𝑛 , (45)

the corresponding steady stored tensile elastic strain energy (𝜓∞) is
given by:

𝜓∞ =

(

𝜏∞𝑥𝑦
)2

4𝜇
. (46)

It becomes apparent from Eq. (45) that the viscoplastic behavior is
only dependent on the ratio [𝛾̇𝑥𝑦∕𝐴], and not on absolute values. This
remains the case when fracture is taken into account, regardless of the
loading conditions.

To reach the failure of the element, the steady tensile elastic strain
energy (𝜓∞) must be greater than the fracture threshold (𝜓𝑐). There-
fore, the threshold ratio ([𝛾̇𝑥𝑦∕𝐴]𝑐) required to reach this fracture
threshold is given by:

𝜓∞ ≥ 𝜓𝑐⇒
[

𝛾̇𝑥𝑦∕𝐴
]𝑐 =

√

3
(

6𝜇𝑔𝑐
𝑙𝑐

)

𝑛
2 . (47)

For 𝑛 = 1, the global solution of Eq. (44) is trivial and the tensile
(𝜓𝑒𝑙0,+) component of elastic energy can be calculated as:

𝜓𝑒𝑙0,+ = 𝜓∞

[

1 − exp

(

−
𝜇𝛾𝑥𝑦
𝜏∞𝑥𝑦

)]2

. (48)

In Fig. 7, it can be seen that for [𝛾̇𝑥𝑦∕𝐴] ≤ [𝛾̇𝑥𝑦∕𝐴]𝑐 the purely
viscoplastic analytical solution (red continuous line) given by Eq. (48)
is consistent with the numerical phase-field solution. The steady ten-
sile elastic energy does not exceed the fracture threshold (𝜓𝑐). The
viscoplastic dissipation rate is high enough to keep the tensile elastic
energy below the fracture threshold. For [𝛾̇𝑥𝑦∕𝐴] = 1.3[𝛾̇𝑥𝑦∕𝐴]𝑐 , the
viscoplastic dissipation rate is no longer high enough. The material
cracks as soon as the fracture threshold is reached (𝜓𝑒𝑙+ ∕𝜓𝑐 = 1) and
the total elastic strain energy is dissipated. These results highlight the
role of the fracture threshold (𝜓𝑐) introduced in the fracture energy
description. Two time scales can be observed for the elastic strain
energy dissipation rate. Damage occurs on a very short time scale,
leading to the dissipation of the total elastic energy (𝜓𝑒𝑙+ → 0), while
viscoplasticity occurs on a longer time scale, leading to non-zero elastic
strain energy at equilibrium (𝜓𝑒𝑙+ → 𝜓∞).

A dichotomous search procedure is used to numerically determine
the critical shear [𝛾̇𝑥𝑦∕𝐴]𝑐 and tensile [𝜀̇𝑦𝑦∕𝐴]𝑐 ratios required to reach
the fracture threshold. Starting from a large interval in which the ratio
is expected, we progressively reduce it (depending on whether the
failure of the element is reached or not) until the size of the interval is
less than 1% of its central value.
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Fig. 7. Normalized tensile elastic strain energy as a function of the ratio [𝛾̇𝑥𝑦∕𝐴]𝑐 .
Norton’s exponent was set to 𝑛 = 1 for comparison with the analytical solution given
by Eq. (48).

Fig. 8. Transition between brittle and ductile response as a function of Norton’s
exponent (𝑛). In the shear case (a) the numerical solution is compared with the
analytical solution given by Eq. (47). In the tensile case (b), only the numerical solution
is shown because there is no explicit analytical solution.

To change the ratio, we vary the applied strain rate and keep
Norton’s constant (𝐴) unchanged.

Fig. 8(a) and (b) respectively show the evolution of the threshold
shear [𝛾̇𝑥𝑦∕𝐴]𝑐 and tensile [𝜀̇𝑦𝑦∕𝐴]𝑐 ratios as a function of Norton’s
exponent (𝑛). In the shear case, the analytical solution (red continuous
line) given by Eq. (47) is consistent with its numerical counterpart. The
critical shear and tensile ratios increase exponentially with Norton’s ex-
ponent. For a ratio less than the critical value, viscoplasticity dominates
the material’s behavior and fracture is not observed. By increasing the
ratio, the response becomes more and more brittle and fracture appears
when the critical ratio is reached.

This first case provided a deeper understanding of the interaction
between fracture and viscoplasticity in the proposed model.

3.1.2. Mode I: Tensile opening
The mode I tensile opening test is used to analyze the effect of vis-

coplasticity on the fracture behavior. Fig. 9(a) illustrates the problem.
The material is homogeneous and only fracture and viscoplasticity are
considered. Symmetry boundary conditions make it possible to reduce
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Fig. 9. Mode I tensile opening: (a) schematic problem; (b) double symmetry finite
element model. 𝑎0 < 10−2 to avoid a significant size effect. For the phase-field
calculation, only the intact horizontal part was constrained against 𝑦, whereas the
crack faces were left free to move.

Fig. 10. Stress–strain curves for brittle response (BR) and ductile response (DR) in the
case of tensile opening (mode I). The results were obtained with 𝑎0 = 𝑙𝑐 , 𝑛 = 3.

the problem to a quarter of the geometry Fig. 9(b). The initial crack
surface is defined by a Dirichlet boundary condition 𝑑 = 1 and is left
free to move. To avoid any significant size effect, the initial crack length
is limited to 𝑎0 < 10−2. Young’s modulus was is set to 𝐸 = 210 with
𝜈 = 0.3, 𝑔𝑐 = 2×10−3 and 𝑙𝑐 = 2×10−4. The region near the initial crack
is finely meshed with a maximum element size of ℎ = 𝑙𝑐∕10 to improve
the precision of the simulations and reduce the effect of spatial mesh
on the results (Molnár et al., 2020a). 𝜂 = 50% is sufficient to ensure
good convergence of the simulation in this case.

Fig. 10 shows the stress–strain curve until fracture for a ratio of
[𝜀̇𝑦𝑦∕𝐴] = 3 × 103 and [𝜀̇𝑦𝑦∕𝐴] = 4 × 104. Norton’s exponent and the
initial crack length were respectively set to 𝑛 = 3 and 𝑎0 = 𝑙𝑐 . For
[𝜀̇𝑦𝑦∕𝐴] = 3×103, a Brittle Response (BR) characterized by a high critical
load (𝜎0,𝑐𝑦𝑦 ) and a low energy density until failure (𝑈𝑡) is observed,
whereas for [𝜀̇𝑦𝑦∕𝐴] = 4 × 104 a Ductile Response (DR) characterized
by a low 𝜎0,𝑐𝑦𝑦 and a high 𝑈𝑡 is observed.

Fig. 11(a) and (b) respectively show the evolution of 𝜎0,𝑐𝑦𝑦 and 𝑈𝑡 as a
function of the ratio [𝜀̇𝑦𝑦∕𝐴] for 𝑎0 = 𝑙𝑐 and 𝑛 = {1, 3}. By increasing the
ratio [𝜀̇𝑦𝑦∕𝐴], 𝜎

0,𝑐
𝑦𝑦 increases but 𝑈𝑡 decreases. This result is consistent

with experimental observations (Verleysen and Peirs, 2017). For a high
[𝜀̇𝑦𝑦∕𝐴] ratio, 𝜎0,𝑐𝑦𝑦 converges to the critical load (𝜎𝑒𝑙,0,𝑐𝑦𝑦 ) and 𝑈𝑡 to
the energy density until failure (𝑈 𝑒𝑙

𝑡 ) in the case of an elastic brittle
material. These results show that when the viscoplastic strain rate
(𝜀̇𝑣𝑝(𝐴)) is comparable to the applied strain rate (𝜀̇𝑦𝑦), DR is observed
because the material undergoes viscoplastic strain and absorbs signif-
icant energy before fracture. However, if the viscoplastic strain rate
is small compared to the applied strain rate, a BR is observed. The
material does not have enough time to dissipate the energy through
viscoplastic activity.
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Fig. 11. Critical load (a) and energy density until failure (b) as function of the ratio
[𝜀̇𝑦𝑦∕𝐴]. The critical load (𝜎𝑒𝑙,0,𝑐𝑦𝑦 ) and the energy density until failure (𝑈 𝑒𝑙

𝑡 ) in the case of
an elastic brittle material are also shown. The direction of the increase in viscoplastic
strain (𝜀𝑣𝑝) at the crack tip is illustrated. (c) Correlation between the critical load and
the energy density until failure. For all simulations, the initial crack length was set to
𝑎0 = 𝑙𝑐 .

The correlation between 𝜎0,𝑐𝑦𝑦 and 𝑈𝑡 is shown in Fig. 11(c). For a
given Norton’s exponent (𝑛), 𝜎0,𝑐𝑦𝑦 increases as 𝑈𝑡 decreases. Interest-
ingly, it can be seen that by acting simultaneously on Norton’s exponent
(𝑛) and on Norton’s constant (𝐴), both 𝜎0,𝑐𝑦𝑦 and 𝑈𝑡 can be improved.

The critical load as a function of the normalized initial crack length
is shown in Fig. 12. The elastic (red circle symbol) and viscoplastic
(black star symbol) cases are represented. In the elastic case (𝐴 = 0),
for 𝑎0 ≫ 𝑙𝑐 , 𝜎

0,𝑐
𝑦𝑦 varies linearly with 𝑎0 in log–log scale. This result

is consistent with the original Griffith’s solution. When 𝑎0 is smaller
than 𝑙𝑐 , 𝜎

0,𝑐
𝑦𝑦 converges to a plateau. This result is similar to that

of Molnár et al. (2020a) and is consistent with the size effect found
experimentally (Bažant, 1984). This mean that the length scale (𝑙𝑐) in-
troduced in the fracture phase-field approach does not spoil the original
Griffith’s description. In the viscoplastic cases, by increasing the ratio
[𝜀̇𝑦𝑦∕𝐴], the viscoplastic solution converges to its elastic counterpart.
By reducing the ratio [𝜀̇𝑦𝑦∕𝐴], viscoplasticity dominates the material’s
behavior and the effect of the initial crack tends to disappear. The
viscoplastic activity at the crack tip mitigates the effect of the initial
crack.
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Fig. 12. Critical load obtained by phase-field simulations as function of the initial
crack length (𝑎0) normalized by 𝑙𝑐 ; Norton’s exponent was set to 𝑛 = 3 for viscoplastic
cases.

3.2. Effect of residual stresses on the interaction between fracture and phase
transformation

During the growth of an oxide layer, which is the phase formed
during the transformation of an alloy, two major phenomena can
influence its fracture behavior. These are the induced residual stresses
and the evolution of the effective properties of the alloy.

3.2.1. Effect of residual stresses on the fracture behavior: homogeneous
solution

During the growth of an oxide layer in an alloy, residual stresses
can be induced by the growth strain of the oxide layer. This growth
strain may be due to the incompatibility of the molar volumes between
the newly formed phase and the parent phase (Panicaud et al., 2006).
The growth strain is modeled by an additional eigenstrain (𝜺∗). The
effect of this eigenstrain on the fracture behavior can be understood by
a single homogeneous elastic 2𝐷 plane strain element. A square plate
with dimensions of 1 × 1 is subjected to a simple vertical tensile load.
Young’s modulus was set to 𝐸 = 210 with 𝜈 = 0.3, 𝑔𝑐 = 2 × 10−3 and
𝑙𝑐 = 2 × 10−2. The energy increment constraint was set to 𝜂 = 1%. A
planar eigenstrain is embedded within the element 𝜺∗ = 𝜀∗𝛿𝑖𝑗 , where
𝛿𝑖𝑗 is the 2nd order identity tensor.

Fig. 13(a) and (b) show respectively the evolution of the normalized
tensile elastic strain energy (𝜓𝑒𝑙+ ) and the corresponding stress as a
function of the applied strain (𝜀𝑦𝑦). The reference case (𝜀∗ = 0) and
the elastic case (𝜀∗ = 0.01) are portrayed. For the latter, it can be
seen that the material remains in compression as long as 𝜀𝑦𝑦 < 𝜀∗

and the corresponding tensile elastic strain energy which controls the
fracture remains at zero. When 𝜀𝑦𝑦 > 𝜀∗, the material goes into tension
and tensile elastic strain energy starts to increase. 𝜀∗ does not change
the critical load compared to the reference case, but induces an offset
on the critical strain. Using the fracture criterion and the stress–strain
relation, the critical load (𝜎𝑐,ℎ𝑜𝑚𝑜𝑦𝑦 ) for this homogeneous case can be
obtained by the following equation:

𝜎𝑐,ℎ𝑜𝑚𝑜𝑦𝑦 =
(

2𝜆𝜇
𝜆 + 2𝜇

+ 2𝜇
)√

√

√

√

√

𝜓𝑐
2𝜆𝜇2

(𝜆 + 2𝜇)2
+ 𝜇

, (49)

where 𝜆 = 𝐸𝜈
(1+𝜈)(1−2𝜈) , 𝜇 = 𝐸

2(1+𝜈) are Lame’s parameters.

As highlighted in Fig. 13(b), compared to the reference case, the
elastic case induces an improvement of 𝑈𝑡 corresponding to the energy
density in compression that does not contribute to fracture.
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Fig. 13. (a) Normalized tensile elastic strain energy and (b) stress as a function of the
applied tensile strain 𝜀𝑦𝑦 The reference case (𝜀∗ = 0) and the elastic case (𝜀∗ = 0.01)
are shown.

3.2.2. Heterogeneous case with planar interface
This section investigates the influence of the growth of a misfitting

oxide layer (𝜺∗) on its fracture behavior. We proceed in two steps.
(i) first, an oxide layer is generated in a matrix under stress-free
conditions. Despite such conditions, due to the oxide layer growth
strain, the local stress in the oxide layer and matrix are non zero during
this growth step. (ii) Second, a macroscopic mechanical load is applied
at high rate until failure of the previously formed oxide layer (loading
step). The effect of internal stresses on growth kinetics has already
been studied by de Rancourt et al. (2016) and Ammar et al. (2014).
In this example the mechanical contribution to the growth kinetics is
neglected. This is done by choosing the parameters 𝑘𝑖 large enough.
The illustration of the mechanical problem combined with the chemical
problem is depicted in Fig. 14. An equilibrium hyperbolic tangent-like
shape is used to set the initial structure:

𝜙(𝑥, 𝑡 = 0) = 1
2

[

1 − tanh
(

𝜃(𝑥 − 𝑓𝑜)
𝛿

)]

, (50)

𝜃 is given by Eq. (40.2) and 𝛿 refer to the interface thickness, 𝑓𝑜 = 2×𝛿
is the initial fraction of the oxide layer (𝜙 = 1). The matrix is initially
in chemical equilibrium (𝑐 = 𝑐𝑚 = 0) and a linear gradient is prescribed
within the oxide layer. The oxide layer growth is therefore due to the
supersaturation prescribed by the Dirichlet condition (𝑐 = 1.6, note that
𝑐 is the normalized concentration, therefore its value can exceed 1) on
the left side. During the loading step, the mechanical load is applied
using a multi-point constraint (MPC) approach as shown in Fig. 14.
The average stress corresponding to the force applied to the top face
is given by:

⟨𝜎𝑦𝑦⟩ =
1 𝜎𝑦𝑦𝑑𝑥. (51)

𝐿 ∫
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Table 2
Dimensionless material parameters used for the simulation of the growth of a misfitting
rigid oxide layer on a soft matrix. The subscripts 𝑜, 𝑚 refer to the oxide layer (𝜙 = 1)
and the matrix (𝜙 = 0), respectively.

Elasticity: 𝐸𝑚 58
𝐸𝑜 210
𝜈𝑚 = 𝜈𝑜 = 𝜈 0.3
𝜀∗ 0.01

Viscoplasticity: 𝑛𝑚 = 𝑛𝑜 3
Fracture: 𝑔𝑚 = 500 × 𝑔𝑜 1.

𝑙𝑐 2 × 10−2

Chemical: 𝜔 2 × 101

𝛿 0.01
𝑀 106

𝐷𝑚 = 𝐷𝑜 1
𝑐𝑚 0.
𝑐𝑜 1.
𝑘𝑚 = 𝑘𝑜 105

Fig. 14. Growth of a rigid misfitting oxide layer in a soft matrix. A multi-point
constraint (MPC) is applied to the top and left surfaces to enforce them to remain
flat. Simulations are carried out in two steps. (i) Firstly, the oxide layer grows without
external applied stress (𝐹 = 0). (ii) Secondly, a macroscopic mechanical load is applied
(𝐹 ≠ 0). The initial concentration is highlighted in red.

𝐿 = 1 is the system size, ⟨𝜎𝑦𝑦⟩ is applied with a sufficiently high rate
compared to the viscoplastic strain rate and the oxide layer growth
kinetics. This avoids growth of the oxide layer and viscoplastic activity
during the loading step.

The material parameters used for the computation are summarized
in Table 2. 𝑔𝑐 of the matrix is set 500 times higher than that of the
oxide layer.

The system is meshed with 1000 linear quadrangular elements in
the 𝑥 direction and 1 element in the 𝑦 direction. Ten elements in the
interface are sufficient to resolve the interface (de Rancourt et al.,
2016). Regarding the time step control, the energy constraint of 𝜂 =
1% is needed during the loading step to ensure good accuracy of the
simulations.

Fig. 15 depicts the stress profile during the growth of the oxide layer
for the reference (𝜀∗ = 𝐴𝑜 = 𝐴𝑚 = 0), elastic (𝜀∗ = 0.01, 𝐴𝑜 = 𝐴𝑚 = 0)
and viscoplastic (𝜀∗ = 0.01, 𝐴𝑜 = 𝐴𝑚 = 1) cases. The oxide layer/matrix
interface is indicated by the vertical dotted line. In the elastic case the
stress remains homogeneous in both matrix and oxide layer while a
gradient with high compressive stresses at the interface is observed in
the oxide layer in the viscoplastic case. This stress gradient obtained
by simulation is consistent with experimental observations (Godlewski
et al., 2000; Ly et al., 2011) and is due to the interplay between stress
relaxation effects and oxide layer growth. The oxide layer that has been
present for a longer period of time has had more time than the newly
formed oxide layer to relax the stresses.

In the reference case there is obviously no stress generated during
the growth step. The position of the matrix/oxide layer interface in the
elastic and viscoplastic cases coincides, indicating a negligible effect of
internal stresses on growth kinetics.

Fig. 16(a) illustrates the growth kinetics of the oxide layer (in semi-
log scale) during the growth step. As expected for diffusion-controlled
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Fig. 15. Stress profile associated with the growth of the oxide layer at 𝑡 = 10−4 (a)
and 𝑡 = 0.15 (b). The reference (𝜀∗ = 𝐴𝑜 = 𝐴𝑚 = 0), elastic (𝜀∗ = 0.01, 𝐴𝑜 = 𝐴𝑚 = 0)
and viscoplastic (𝜀∗ = 0.01, 𝐴𝑜 = 𝐴𝑚 = 1) cases are represented. The matrix/oxide layer
interface region is indicated by the vertical black dotted line.

processes the kinetics follow a square-root law (𝑓 =
√

𝐾𝑡). 𝐾 = 1.02
corresponds to the best fit of the data by least square methods. The
kinetics is the same in the reference, elastic and viscoplastic cases
because as mentioned above, the material parameters are chosen in
such a way that the internal stresses do not have any impact on the
growth kinetics.

The evolution of the residual stress (𝜎𝑟𝑦𝑦) in the oxide layer (ex-
tracted at the defined control point shown in Fig. 14) as a function
of the duration of the growth step is illustrated in Fig. 16(b) for the
reference, elastic and viscoplastic cases. In the elastic case, during the
growth of the oxide layer, the residual compressive stress in the oxide
layer is progressively relaxed and tends towards zero when the matrix is
fully transformed (𝑓 = 1). In the viscoplastic case, the stress relaxation
is accelerated by the viscoplastic activity. There is obviously no residual
stress in the reference case.

Fig. 16(c) compares the critical load (⟨𝜎𝑐𝑦𝑦⟩) as a function of the
duration of the growth step for the three studied cases. The critical
load presented here is related to the oxide layer failure. It can be
seen that the critical load increases in all cases as the oxide layer
grows. The growth of the oxide layer stiffens the alloy and leads to
an improvement of the critical load. When 𝑓 = 1 the homogeneous
solution (see Eq. (49)) is reached.

For a given oxide layer fraction, the critical stress is maximal
in the elastic case and minimal in the reference case. This shows a
beneficial effect of the compressive stresses induced in the oxide layer
during its growth. In the viscoplastic case, the critical load curve shifts
progressively from the elastic case to the reference case. This is due
to the progressive relaxation of the oxide layer residual stress (𝜎𝑟𝑦𝑦)
during the growth of the oxide layer. Compared to the reference case,
the improvement of the critical load in the elastic or viscoplastic case
corresponds to the load required to compensate the compressive stress
in the oxide layer.

As shown in Fig. 16(d) the observations made for the critical load
are also valid for 𝑈 .
𝑡
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Similar simulations were carried out by applying a monotonic me-
chanical load during the growth step. The load is applied with a low
rate so that the oxide layer has sufficient time to grow before its failure.
The prescribed stress varies linearly from ⟨𝜎𝑦𝑦⟩ = 0 at 𝑡 = 0 to ⟨𝜎𝑦𝑦⟩ = 16
at 𝑡 = 1.

Fig. 17 shows the stress–strain curve at the control point in the
elastic and viscoplastic cases. In the elastic case the stiffening induced
by the growth of the oxide layer improves the critical stress. In the
viscoplastic case the stiffening is observed at the beginning of the
curve after which the softening effect due to the viscoplastic activity
progressively takes the lead. The critical strain is thus improved at the
expense of the critical stress. The time dependence of the oxide layer
growth is given by a square-root law (𝑓 =

√

𝐾𝑡) while that of the
viscoplastic strain is given by a power law (𝜀̇𝑣𝑝 = 𝑄𝑡𝑛 𝑛 ≥ 1). This
is why the softening effect of viscoplastic activity, necessarily becomes
dominant over the stiffening effect of oxide layer growth.

3.3. Heterogeneous case with non planar interface : single inclusion

In this section, the interplay between fracture and morphological
evolutions during the diffusion-controlled growth of a single inclusion
is investigated. As in the previous section, we proceed in two steps.
First, the inclusion evolves under stress-free conditions until its fraction
reaches 𝑓 = 0.1. Then, a macroscopic mechanical load is applied until
failure.

The problem is depicted in Fig. 18. Periodic boundary conditions
(PBC) are imposed on the edges (𝜕𝑉 ) in order to treat the problem
only on a Representative Elementary Volume (REV). PBC are applied
by constraining all degrees of freedom to take the same value at two
opposite points of 𝜕𝑉 . During the loading step, a vertical mean strain
is imposed by constraining the displacement difference (𝛥𝑢) along the
𝑦-direction between two opposite points respectively located on the
bottom and top faces. The applied PBC are summarized by:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢𝑦(𝑥, 𝑦 = 1, 𝑡) − 𝑢𝑦(𝑥, 𝑦 = 0, 𝑡) = 𝛥𝑢,

𝑢𝑥(𝑥, 𝑦 = 1, 𝑡) − 𝑢𝑥(𝑥, 𝑦 = 0, 𝑡) = 0,

𝑢𝑥(𝑥 = 0, 𝑦, 𝑡) − 𝑢𝑥(𝑥 = 1, 𝑦, 𝑡) = 0,

𝑑(𝑥, 𝑦 = 1, 𝑡) − 𝑑(𝑥, 𝑦 = 0, 𝑡) = 0,

𝑑(𝑥 = 0, 𝑦, 𝑡) − 𝑑(𝑥 = 1, 𝑦, 𝑡) = 0.

(52)

The mean strain is applied with a relatively high rate compared to
the phase transformation kinetics. This avoids a morphological change
of the inclusion during the loading step.

A single circular inclusion which an initial radius of 𝑟0 = 2× 10−2 is
placed in the center of the matrix. Initially, the inclusion is saturated
(𝑐 = 𝑐𝑖) and evolves under the matrix supersaturation (𝑐 = 𝑐𝑚 + 0.5).

The fracture and chemical parameters used for the computation are
summarized in Table 3. For sake of brevity, the inclusion and the matrix
are supposed to have the same 𝑔𝑐 . The other parameters are specified
for each studied case. A regular mesh of 250 × 250 linear quadrangular
elements is used and the energy constraint is set to 𝜂 = 1%.

Fig. 19 shows the crack topology obtained in the reference case
(𝜀∗ = 0, 𝐴𝑚 = 𝐴𝑖 = 0) depending on whether the inclusion is
stiffer or softer than the matrix. When the inclusion is stiffer than the
matrix (𝐸𝑖 > 𝐸𝑚, Fig. 19(a)), the crack initiation occurs at the poles
of the inclusion. Whereas when the inclusion is softer than the matrix
(𝐸𝑖 < 𝐸𝑚, Fig. 19(b)), the crack initiation occurs at the equator of the
inclusion. This remains true in the elastic (𝜀∗ = 0.05, 𝐴𝑚 = 𝐴𝑖 = 0) and
viscoplastic (𝜀∗ = 0.05, 𝐴𝑚 = 𝐴𝑖 = 100) cases. The viscoplastic activity
and residual stresses induced by the inclusion growth strain have no
influence on the crack topology in this example.

However an effect of viscoplasticity and residual stresses is observed
when examining ⟨𝜎𝑐𝑦𝑦⟩ and 𝑈𝑡 as illustrated in Table 4. It can be seen
that the values of ⟨𝜎𝑐𝑦𝑦⟩ and 𝑈𝑡 in the viscoplastic case are always
between the reference and the elastic cases. Stress relaxation induced
by viscoplastic activity introduces an intermediate fracture behavior
between the reference and elastic behavior.
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Fig. 16. (a) Parabolic oxide layer growth kinetics. The parabolic constant 𝐾 = 1.02
corresponds to the best fit of the data by least square methods. (b) The residual
stress (𝜎𝑟𝑦𝑦) at the control point after the oxide layer growth step for the reference
(𝜀∗ = 0, 𝐴𝑜 = 𝐴𝑚 = 0), elastic (𝜀∗ = 0.01, 𝐴𝑜 = 𝐴𝑚 = 0) and viscoplastic (𝜀∗ = 0.01, 𝐴𝑜 =
𝐴𝑚 = 1) cases. (c) and (d) respectively show the critical load (⟨𝜎𝑐𝑦𝑦⟩) and 𝑈𝑡 at oxide
layer failure.

Table 3
Dimensionless material parameters used for the simulation of the growth of an
inclusion. The subscripts 𝑖, 𝑚 respectively refers to the inclusion (𝜙 = 1) and to the
matrix (𝜙 = 0).

Elastic: 𝜈𝑚 = 𝜈𝑖 0.3
Fracture: 𝑔𝑚 = 𝑔𝑖 2 × 10−3

𝑙𝑐 8 × 10−3

Chemical: 𝜔 5 × 10−2

𝛿 0.04
𝑀 106

𝐷𝑚 = 𝐷𝑖 = 𝐷 1
𝑐𝑚 1.33
𝑐𝑖 1.75
𝑘𝑚 = 𝑘𝑖 100
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Fig. 17. Effect of low rate monotonic mechanical load during oxide layer growth.
Macroscopic stress–strain curve in the elastic case (𝜀∗ = 0.01, 𝐴𝑝 = 𝐴𝑚 = 0) and
viscoplastic case (𝜀∗ = 0.01, 𝐴𝑝 = 𝐴𝑚 = 0.01).

Fig. 18. A unit cell of periodic binary material used to study the fracture topology
during the growth of a single inclusion. We proceed in two steps. Firstly, the saturated
inclusion (𝑐(𝑡 = 0) = 𝑐𝑖) grows under matrix supersaturation (𝑐(𝑡 = 0) = 𝑐𝑚 +0.5) without
external applied stress (𝛥𝑢 = 0) until its fraction reaches 𝑓 = 0.1. Secondly, a high rate
macroscopic vertical mean strain is applied (𝛥𝑢 = 𝑢0) until failure.

Fig. 19. Fracture topology during the growth of a single inclusion for the reference
case (𝜀∗ = 0, 𝐴𝑖 = 𝐴𝑚 = 0). In (a) the inclusion is stiffer than the matrix. In (b) the
inclusion is softer than the matrix. The arrows indicate the propagation direction from
crack initiation.
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Table 4
Energy density until failure (𝑈𝑡) and critical load (⟨𝜎𝑐𝑦𝑦⟩) after the growth of a single
inclusion for the reference case (𝜀∗ = 0, 𝐴𝑚 = 𝐴𝑖 = 0), elastic case (𝜀∗ = 0.05, 𝐴𝑚 =
𝐴𝑖 = 0) and viscoplastic case (𝜀∗ = 0.05, 𝐴𝑚 = 𝐴𝑖 = 100). In all cases, the growth step is
stopped when the inclusion fraction reaches 𝑓 = 0.1. Then, the loading is applied until
failure.

Rigid inclusion
(𝐸𝑖 = 210, 𝐸𝑚 = 58)

Reference Viscoplastic Elastic

⟨𝜎𝑐𝑦𝑦⟩: 3.57 3.64 3.81
𝑈𝑡 × 10−2: 7.43 7.95 8.85

Soft inclusion
(𝐸𝑖 = 58, 𝐸𝑚 = 210)

Reference Viscoplastic Elastic

⟨𝜎𝑐𝑦𝑦⟩: 5.59 5.03 3.25
𝑈𝑡 × 10−2 : 6.47 5.81 2.49

Fig. 20. A unit cell of periodic binary elastic material used to study the crack path
induced by a mechanical loading during the Ostwald ripening process. We proceed
in two step. Firstly, the saturated inclusions (𝑐(𝑡 = 0) = 𝑐𝑖) grow under matrix
supersaturation (𝑐(𝑡 = 0) = 𝑐𝑚 + 0.5) without external applied stress (𝛥𝑢 = 0). Secondly,
a high rate macroscopic vertical mean strain is applied (𝛥𝑢 = 𝑢0) until failure.

3.4. Heterogeneous case with non planar interface: several inclusions

Here, the model of the previous example is analyzed by considering
several initial rigid inclusions that evolve in a soft matrix. This problem,
known as the Ostwald ripening phenomenon, is a process that can
be observed in heterogeneous solids. During such a process, small
inclusions dispersed in a matrix evolve to minimize the total free energy
of the system (Alloyeau et al., 2010; Kabalnov, 2001). The evolution
takes place mainly by the coalescence of neighboring inclusions or by
the growth of large inclusions at the expense of the smallest inclusions
as already illustrated by Ammar et al. (2014). The aim of this section
is to study the effect of such a process on the crack topology.

A two-step analysis is performed. First, the inclusions evolve under
stress-free conditions (Ostwald ripening or growth step). Then, a verti-
cal mean strain is applied until failure (loading step). Fig. 20 gives an
illustration of the problem.

Several circular inclusions with an initial radius of 𝑟0 = 2 ⋅ 10−2
are randomly distributed in the matrix. Initially, the inclusions are
saturated (𝑐 = 𝑐𝑖) and evolve under the matrix supersaturation (𝑐 = 𝑐𝑚+
0.5). The material parameters used for the computation are summarized
in Table 5. In this example, the chemical properties are chosen so that
the internal stress has a significant effect on the growth morphology.
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Fig. 21. Crack initiation and propagation through a matrix-inclusion network for different stages of the Ostwald ripening process. (a)–(c) show the initiation while (d)–(i) depict
the propagation during the Ostwald ripening process.
Table 5
Dimensionless material parameters used for the simulation of the Ostwald ripening
process. The subscripts 𝑖, 𝑚 respectively refer to the inclusion (𝜙 = 1) and the matrix
(𝜙 = 0).

Elasticity: 𝐸𝑚 58
𝐸𝑖 210
𝜈𝑚 = 𝜈𝑖 = 𝜈 0.3

Fracture: 𝑔𝑚 = 𝑔𝑖 2 × 10−3

𝑙𝑐 8 × 10−3

Chemical: 𝜔 5 × 10−4

𝛿 0.04
𝑀 106

𝐷𝑚 = 𝐷𝑖 1
𝑐𝑚 1.33
𝑐𝑖 1.75
𝑘𝑚 = 𝑘𝑖 1

Fig. 21 shows the crack topologies obtained at different stages of the
Ostwald ripening process in the reference case (𝜀∗ = 0, 𝐴𝑖 = 𝐴𝑚 = 0).
It can be seen that cracks always initiate in the matrix between the
nearest inclusions aligned in the loading direction (Fig. 21(a)–(c)).
The cracks then propagate by bypassing the inclusions encountered
along their propagation path (Fig. 21(d)–(i)). When the inclusion en-
countered is small, a bifurcation is observed (Fig. 21(d) and (g)),
but if the inclusion is large, the crack bypasses it without bifurcating
(Fig. 21(e),(f),(h) and (i)). From an energy point of view, the observed
inclusion bypassing process increases the amount of energy dissipated
by the crack compared to the homogeneous case where the crack would
propagate in a straight line.

Fig. 22 compares the crack topologies obtained between the refer-
ence case (𝜀∗ = 0, 𝐴𝑚 = 𝐴𝑖 = 0), elastic case (𝜀∗ = 0.01, 𝐴𝑚 = 𝐴𝑖 = 0)
and viscoplastic case (𝜀∗ = 0.01, 𝐴𝑚 = 𝐴𝑖 = 1) after the same duration of
the Ostwald ripening process (𝑡 = 0.5). A defect (𝑑 = 1) has been added
to the central nodes of the left and right side of the system. The final
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morphologies and thus the crack topologies are significantly different in
the three cases which shows the importance of taking into account the
internal stresses generated during the growth process. Interestingly, we
observe that despite the initial defect, cracking can be initiated between
two particles when they are very close to each other.

This last example demonstrates the robustness of the proposed
multiphase-field model which makes it possible to solve complex shape
evolution and crack topology using classical numerical methods.

4. Conclusion

This work presented a multiphase-field model to describe the frac-
ture behavior in viscoplastic non-static binary alloys. For this purpose,
the fracture phase-field and phase-field for phase transformation ap-
proaches were successfully coupled. Several benchmark examples were
shown and results based on the critical loading, energy density until
failure and crack topology were discussed.

First, the effect of the loading rate on the fracture behavior of a
homogeneous viscoplastic material was studied. At low strain rates
ductile fracture response is observed. There was sufficient time for
significant energy dissipation by developing viscoplastic deformation,
whereas at high strain rates brittle fracture response is observed. The
material does not have time to dissipate energy by viscoplastic strain.
Plastic activity at the crack tip was found to mitigate the effect of
pre-existing defects on mechanical strength.

Second, the effect on the fracture behavior of a rigid oxide layer
growing on a soft matrix was also studied. It was shown that the
stiffening induced by the growth of an oxide layer improves the macro-
scopic mechanical strength of the alloy formed. At low strain rates,
when viscoplasticity is taken into account, the softening effect induced
by viscoplasticity ends up dominating over the stiffening effect of
oxide layer growth over time. It was also shown that viscoplasticity
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𝑒

Fig. 22. Crack topology after Ostwald ripening process for the reference case
(𝜀∗ = 0, 𝐴𝑚 = 𝐴𝑖 = 0), elastic case (𝜀∗ = 0.01, 𝐴𝑚 = 𝐴𝑖 = 0) and viscoplastic case
(𝜀∗ = 0.01, 𝐴𝑚 = 𝐴𝑖 = 1). The duration of the growth step was set to 𝑡 = 0.5. The

loading was applied in vertical direction. The arrows indicate the direction of the
crack propagation.

introduces an intermediate fracture behavior between the reference be-
havior (without residual stresses induced by the phase transformation)
and the elastic behavior (with residual stresses taking into account only
the elasticity).

The effect of phase morphology and relative stiffness was also
studied. With respect to the loading direction, when a particle is more
rigid than the matrix, cracking occurs at the poles of the particle. On
the other hand, when the particle is less rigid, the initiation occurs at
the equator. In case of several rigid inclusions growing in a soft matrix,
it has been observed that the area between neighboring inclusions
aligned along the loading direction are preferential zones for crack
initiation. The crack bypasses the rigid inclusions encountered on its
path. Depending on the size of the encountered inclusion, the crack may
bifurcate in the case of small inclusions or bypass without bifurcation
in the case of large inclusions.

This work presents only simulated results. The question of the
experimental validation of the presented model is an important topic
that has not been addressed in this paper. In our forthcoming work,
this model will be used to simulate the thermomechanical behavior and
oxidation of a fuel rod cladding under pressure at high temperature.
In this context, improvements of the model taking into account the
microstructure of the oxide film may be necessary. Improvements are
also needed to better describe the mechanisms associated with duc-
tile fracture and take into account large deformations (Miehe et al.,
2016a). Furthermore, in order to simulate the oxidation under stress
phenomenon generally observed at low strain rates, the mass transport
and probably the phase transformation equation in the damaged region
must be adjusted.
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Appendix A. Second law of thermodynamics

Based on the theory of generalized stresses (Gurtin, 1996), we note
by {𝝈, 𝝃, 𝜋, 𝜔} the microforce system which are respectively the ener-
getic duals of {𝛁𝑠𝒖, 𝛁𝜙, 𝜙, 𝑑}. 𝝈 is the classical Cauchy stress tensor, 𝝃,
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𝜋 are respectively the vector and scalar micro-forces associated with the
phase change (Ammar et al., 2009b) and 𝜔 the driving force associated
with fracture (Miehe et al., 2010b). The total internal energy density
is the linear combination of the generalized stresses by their respective
dual variables:

̇ = 𝜋𝜙̇ + 𝝃 ⋅ 𝛁𝜙̇ + 𝜔𝑑̇ + 𝝈 ∶ 𝜺̇ + 𝑔𝑐 𝛾̇ (A.1)

the last term of the right-hand sides represents the fracture energy
density. The local form of the second law of thermodynamics in the
isothermal case is given by Ammar et al. (2009b) :

𝑇 𝑠̇ − 𝛁 ⋅ (𝜇𝑱 ) ≥ 0 (A.2)

where 𝑠 is the entropy density, 𝑇 is the temperature, 𝜇 is the chemical
potential and 𝑱 is the chemical flux. The Helmholtz free energy (𝜓),
internal energy (𝑒) and entropy (𝑠) densities are related by the following
Legendre transform :

𝜓 = 𝑒 − 𝑇 𝑠 (A.3.1)

𝜓̇ = 𝑒̇ − 𝑇 𝑠̇ in isothermal case (A.3.2)

The local mass conservation equation is given by Ammar et al. (2014):

𝑐̇ = −𝛁 ⋅ 𝑱 (A.4)

Combining Eqs. (A.1) to (A.4) leads to the Clausius–Duhem
inequality :

−𝜓̇ + 𝜋𝜙̇ + 𝝃 ⋅ 𝛁𝜙̇ + 𝜔𝑑̇ + 𝝈 ∶ 𝜺̇ + 𝑔𝑐 𝛾̇ − 𝑱 ⋅ 𝛁𝜇 + 𝜇𝑐̇≥0 (A.5)

The time derivation of the Helmholtz free energy density is given
by :

𝜓̇
(

𝜺𝑒𝑙 , 𝑐, 𝜙,𝛁𝜙, 𝑑
)

=
𝜕𝜓
𝜕𝜺𝑒𝑙

∶𝜺̇𝑒𝑙 + 𝜕𝜓
𝜕𝑐
𝑐̇ +

𝜕𝜓
𝜕𝜙

𝜙̇ +
𝜕𝜓
𝜕𝛁𝜙

⋅ 𝛁𝜙̇ +
𝜕𝜓
𝜕𝑑

𝑑̇ (A.6)

Replacing Eq. (A.6) in Eq. (A.5) gives :
(

𝝈 −
𝜕𝜓
𝜕𝜺𝑒𝑙

)

∶ 𝜺̇𝑒𝑙 +
(

𝜇 −
𝜕𝜓
𝜕𝑐

)

𝑐̇ +
(

𝜋 −
𝜕𝜓
𝜕𝜙

)

𝜙̇ +
(

𝝃 − 𝜕𝜓
𝜕𝛁𝜙

)

⋅ 𝛁𝜙̇

+
(

𝜔 −
𝜕𝜓
𝜕𝑑

)

𝑑̇

−𝑱 ⋅ 𝛁𝜇 + 𝝈 ∶ 𝜺̇𝑣𝑝 + 𝑔𝑐 𝛾̇ ≥ 0

(A.7)

Assuming that the Cauchy tensor (𝝈), the chemical potential (𝜇) and
the generalized stress vector (𝝃) are respectively independent of 𝜺̇𝑒𝑙, 𝑐̇
and 𝛁𝜙̇ gives the following state laws (de Rancourt et al., 2016):

𝝈 =
𝜕𝜓
𝜕𝜺𝑒𝑙

(A.8.1)

𝜇 =
𝜕𝜓
𝜕𝑐

(A.8.2)

𝝃 =
𝜕𝜓
𝜕𝛁𝜙

(A.8.3)

The dissipation rate inequality is then reduced to :

 = 𝝈∶𝜺̇𝑣𝑝 − 𝑱 ⋅ 𝛁𝜇 + 𝜋𝑑𝑖𝑠𝜙̇ + 𝜔𝑑𝑖𝑠𝑑̇ + 𝑔𝑐 𝛾̇≥0 (A.9)

where 𝜋𝑑𝑖𝑠 and 𝜔𝑑𝑖𝑠 are defined by :

𝜋𝑑𝑖𝑠 = 𝜋 −
𝜕𝜓
𝜕𝜙

(A.10.1)

𝜔𝑑𝑖𝑠 = 𝜔 −
𝜕𝜓
𝜕𝑑

(A.10.2)

As done in Ammar et al. (2009b), a convex dissipation potential
function is defined to ensure the dissipation rate inequality :

𝛺(𝜎𝑣𝑚,𝛁𝜇, 𝜋𝑑𝑖𝑠, 𝜙) = ℎ(𝜙)𝛺𝑎(𝜎𝑣𝑚,𝛁𝜇, 𝜋𝑑𝑖𝑠) + ℎ(𝜙)𝛺𝑏(𝜎𝑣𝑚,𝛁𝜇, 𝜋𝑑𝑖𝑠)

= ℎ(𝜙)
𝐴𝑎𝜎

𝑛𝑎+1
𝑣𝑚

𝑛𝑎 + 1
+ ℎ(𝜙)

𝐴𝑏𝜎
𝑛𝑏+1
𝑣𝑚

𝑛𝑏 + 1

+ 1 (

𝐿(𝜙)𝛁𝜇 ⋅ 𝛁𝜇 +𝑀𝜋2
)

(A.11)

2 𝑑𝑖𝑠
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where 𝑀 is the interface mobility and 𝐿(𝜙) is the homogenized dif-
fusion coefficient (Onsager coefficient). The complementary evolution
laws are then derived from the dissipation potential :

𝜀̇𝑣𝑝𝑣𝑚 = 𝜕𝛺
𝜕𝜎𝑣𝑚

= ℎ(𝜙)𝐴𝑎𝜎
𝑛𝑎
𝑣𝑚 + ℎ(𝜙)𝐴𝑏𝜎

𝑛𝑏
𝑣𝑚 (Norton’s law) (A.12.1)

𝜙̇ = 𝜕𝛺
𝜕𝜋𝑑𝑖𝑠

=𝑀𝜋𝑑𝑖𝑠 (A.12.2)

= − 𝜕𝛺
𝜕𝛁𝜇

= −𝐿(𝜙)𝛁𝜇 (Fick’s law) (A.12.3)

𝜕𝛺
𝜕𝜔𝑑𝑖𝑠

= 0→𝜔 =
𝜕𝜓
𝜕𝑑

(A.12.4)

The dissipation rate inequality is then further reduced to :

= 𝛺(𝜎𝑣𝑚,𝛁𝜇, 𝜋𝑑𝑖𝑠, 𝜙) + 𝑔𝑐 𝛾̇≥0 (A.13)

his inequality ensures that the second law of thermodynamics is
espected.

ppendix B. Finite element implementation

The strong forms of the four coupled problems (displacement,
iffusion, phase transformation, fracture) to be solved are summarized
s follows:

𝛁 ⋅ 𝝈 − 𝒇𝑣 = 0,

𝑐̇ + 𝛁 ⋅
(

𝐿(𝜙)𝛁
(

𝜕𝜓
𝜕𝑐

))

= 0,

−𝛼𝛥𝜙 +
𝜙̇
𝑀

+
𝜕𝜓
𝜕𝜙

= 0,
𝑔𝑐
𝑙𝑐
(𝑑 − 𝑙2𝑐𝛥𝑑) = 2(1 − 𝑑).

(B.1)

A Newton–Raphson method is used to solve the multiphysic prob-
lem iteratively:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K𝒖𝒖 K𝒖𝜙 0 0

K𝜙𝒖 K𝜙𝜙 K𝜙𝑐 0

0 K𝑐𝜙 K𝑐𝑐 0

0 0 0 K𝑑𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒖𝑛+1

𝝓𝑛+1

𝒄𝑛+1

𝒅𝑛+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒓𝒖𝑛

𝒓𝝓𝑛

𝒓𝒄𝑛

𝒓𝒅𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B.2)

he corresponding residue vectors read as:

𝒓𝒖𝑖 = ∫𝑉

(

B𝑖𝑗𝝈𝑗 −N𝑖𝑗𝒇𝑣𝑗
)

𝑑𝑉 − ∫𝜕𝑉
N𝑖𝑗 𝒕𝑗𝑑𝑆, (B.3)

𝒓𝒄𝑖 = ∫𝑉

{

𝑵𝑖𝑵𝑗 𝒄̇𝑗 − 𝐿(𝜙)B𝑖𝑗
[

𝛁
(

𝜕𝜓
𝜕𝑐

)]

𝑗

}

𝑑𝑉 + ∫𝜕𝑉
𝑵𝑖

(

𝑱 ⋅ 𝒏
)

𝑑𝑆,

(B.4)

𝒓𝝓𝑖 = ∫𝑉

{

𝑵𝑖

(

𝜙̇
𝑀

+
𝜕𝜓
𝜕𝜙

)

− 𝛼B𝑖𝑗 (𝛁𝜙)𝑗
}

𝑑𝑉 , (B.5)

𝒓𝒅𝑖 = ∫𝑉

{

𝑵𝑖

(

𝑔𝑐
𝑙𝑐
𝑑 − 2(1 − 𝑑)

)

+ 𝑔𝑐 𝑙𝑐B𝑖𝑗 (𝛁𝑑)𝑗
}

𝑑𝑉 . (B.6)

In Eq. (B.4), 𝑱 is the external chemical flux. The matrix of shape
functions and its derivatives used for the discretization of the scalar
quantities N, B and the vector quantities N, B are given by:

=
[

𝑁1 𝑁2 … 𝑁𝑛
]

(B.7)

=
[

𝑁1 0 𝑁2 0 … 𝑁𝑛 0
0 𝑁1 0 𝑁2 … 0 𝑁𝑛

]

(B.8)

=

⎡

⎢

⎢

⎢

⎢

𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑥

…
𝜕𝑁𝑛
𝜕𝑥

𝜕𝑁1 𝜕𝑁2 …
𝜕𝑁𝑛

⎤

⎥

⎥

⎥

⎥

(B.9)
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⎣ 𝜕𝑦 𝜕𝑦 𝜕𝑦 ⎦
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁1
𝜕𝑥

0
𝜕𝑁2
𝜕𝑥

0 …
𝜕𝑁𝑛
𝜕𝑥

0

0
𝜕𝑁1
𝜕𝑦

0
𝜕𝑁2
𝜕𝑦

… 0
𝜕𝑁𝑛
𝜕𝑦

𝜕𝑁1
𝜕𝑦

𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑦

𝜕𝑁2
𝜕𝑥

…
𝜕𝑁𝑛
𝜕𝑦

𝜕𝑁𝑛
𝜕𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(B.10)

In Eq. (B.2) the tangents matrices are calculated as follows:
[

K𝒖𝒖
]

𝑖𝑗 = ∫𝑉

{

B𝑇𝑖𝑘

(

𝜕2𝜓𝑒𝑙

𝜕𝜺2

)

𝑘𝑙
B𝑙𝑗

}

𝑑𝑉 (B.11)

K𝒖𝜙
]

𝑖𝑗 = ∫𝑉

{

B𝑇𝑖𝑘

(

𝜕2𝜓𝑒𝑙

𝜕𝜙𝜕𝜺

)

𝑘
N𝑗

}

𝑑𝑉 (B.12)

[

K𝑒𝜙𝒖
]

𝑖𝑗
= −∫𝑉

{

N𝑖
(

𝜕2𝜓
𝜕𝜺𝜕𝜙

)

𝑘
B𝑘𝑗

}

𝑑𝑉 (B.13)

[

K𝜙𝑐
]

𝑖𝑗 = −∫𝑉

{

𝜕2𝜓
𝜕𝑐𝜕𝜙

N𝑖N𝑗
}

𝑑𝑉 (B.14)

[

K𝜙𝜙
]

𝑖𝑗 = −∫𝑉

{(

1
𝑀𝛥𝑡

+
𝜕2𝜓
𝜕𝜙2

)

N𝑖N𝑗 + 𝛼B𝑇𝑖𝑘B𝑘𝑗
}

𝑑𝑉 (B.15)

[

K𝑑𝑑
]

𝑖𝑗 = ∫𝑉

{

N𝑖N𝑗
(

𝑔𝑐
𝑙𝑐

+ 2
)

+ 𝑔𝑐 𝑙𝑐B𝑇𝑖𝑘B𝑘𝑗
}

𝑑𝑉 (B.16)

[

K𝑐𝑐
]

𝑖𝑗 = ∫𝑉

{

1
𝛥𝑡
N𝑖N𝑗 + 𝐿(𝜙)B𝑇𝑖𝑘

[(

𝜕3𝜓
𝜕𝑐3

)

(𝛁𝑐)𝑘N𝑗

+
(

𝜕3𝜓
𝜕𝑐𝜕𝜙𝜕𝑐

)

(𝛁𝜙)𝑘N𝑗 +
𝜕2𝜓
𝜕𝑐2

B𝑘𝑗
]}

(B.17)

ote that the global stiffness matrix is not symmetric. The problem is
olved with a non symmetric solver.

ppendix C. Useful derivatives for implementation

.1. Helmholtz free energy density derivatives

The derivatives of the Helmholtz free energy density (𝜓) required
or the calculation of the residuals and stiffness matrix are given below:

𝜕2𝜓
𝜕𝜺𝑒𝑙𝜕𝜙

= C∶ 𝜕𝜺
𝑒𝑙

𝜕𝜙
+ ℎ′(𝜙)

(

C𝑎 − C𝑏
)

∶𝜺𝑒𝑙 , (C.1)

𝜕𝜓
𝜕𝜙

=
𝜕𝜓𝑒𝑙

𝜕𝜙
+
𝜕𝜓𝑐ℎ

𝜕𝜙

= 𝜕𝜺𝑒𝑙
𝜕𝜙

∶C∶𝜺𝑒𝑙 + ℎ′(𝜙)
2

𝜺𝑒𝑙∶
(

C𝑎 − C𝑏
)

∶𝜺𝑒𝑙 +𝑊 𝑔′(𝜙) + ℎ′(𝜙)(𝜓𝑐ℎ𝑎 − 𝜙𝑐ℎ𝑏 ), (C.2)

𝜕2𝜓
𝜕𝜙2

=
𝜕2𝜓𝑒𝑙

𝜕𝜙2
+
𝜕2𝜓𝑐ℎ

𝜕𝜙2

= 𝜕2𝜺𝑒𝑙

𝜕𝜙2
∶C∶𝜺𝑒𝑙 + 2ℎ′(𝜙) 𝜕𝜺

𝑒𝑙

𝜕𝜙
∶
(

C𝑎 − C𝑏
)

∶𝜺𝑒𝑙 (C.3)

+ 𝜕𝜺𝑒𝑙
𝜕𝜙

∶C∶ 𝜕𝜺
𝑒𝑙

𝜕𝜙
+
ℎ′′(𝜙)
2

𝜺𝑒𝑙∶
(

C𝑎 − C𝑏
)

∶𝜺𝑒𝑙 +𝑊 𝑔′′(𝜙) + ℎ′′(𝜙)(𝜓𝑐ℎ𝑎 − 𝜙𝑐ℎ𝑏 ),

𝜕2𝜓
𝜕𝑐𝜕𝜙

= ℎ′(𝜙)𝑘𝑎(𝑐 − 𝑐𝑎) − ℎ′(𝜙)𝑘𝑏(𝑐 − 𝑐𝑏), (C.4)

𝜕3𝜓
𝜕𝑐𝜕𝜙2

= ℎ′′(𝜙)𝑘𝑎(𝑐 − 𝑐𝑎) − ℎ′′(𝜙)𝑘𝑏(𝑐 − 𝑐𝑏), (C.5)

𝜕3𝜓
𝜕𝑐2𝜕𝜙

= ℎ′(𝜙)(𝑘𝑎 − 𝑘𝑏), (C.6)
where C is the stiffness matrix.
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C.2. Elastic strain energy derivatives

The derivatives of the elastic strain (𝜺𝑒𝑙), required for the calculation
of the derivatives of the Helmholtz free energy are given below:

𝜕𝜺𝑒𝑙
𝜕𝜙

= ℎ′(𝜙)
(

𝜺∗𝑏 + 𝜺𝑣𝑝𝑏 − 𝜺∗𝑎 − 𝜺𝑣𝑝𝑎
)

(C.7)

𝜕2𝜺𝑒𝑙

𝜕𝜙2
= ℎ′′(𝜙)

(

𝜺∗𝑏 + 𝜺𝑣𝑝𝑏 − 𝜺∗𝑎 − 𝜺𝑣𝑝𝑎
)

(C.8)
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